
Distilling Structure from Imagery:
Graph-based Models for the Interpretation of

Document Images

A dissertation submitted by Pau Riba Fiérrez
at Universitat Autònoma de Barcelona to fulfil
the degree of Doctor of Philosophy.

Bellaterra, September 9, 2020



Directors Dr. Josep Lladós
Universitat Autònoma de Barcelona
Dep. Ciències de la Computació & Centre de Visió per Computador

Dra. Alicia Fornés
Universitat Autònoma de Barcelona
Dep. Ciències de la Computació & Centre de Visió per Computador

Thesis
Committee

Dr. Francesc Serratosa
Universitat Rovira i Virgili
Tarragona, Catalunya

Dr. Dimosthenis Karatzas
Universitat Autònoma de Barcelona
Dep. Ciències de la Computació & Centre de Visió per Computador

Dr. Kaspar Riesen
University of Applied Sciences and Arts Northwestern Switzerland
Brugg, Switzerland

International
Evaluators

Dr. Andreas Fischer
Université de Fribourg
Fribourg, Switzerland

Dr. Muhammad Muzzamil Luqman
La Rochelle Université
La Rochelle, France

This document was typeset by the author using LATEX2ε.

The research described in this book was carried out at the Computer Vision Center,
Universitat Autònoma de Barcelona.

This work is liscensed under Creative Commons Attribution-ShareAlike 4.0 Inter-
national (CC BY-SA 4.0) cba 2020 by Pau Riba Fiérrez. You are free to copy
and redistribute the material in any medium or format as long as you attribute
its author. If you alter, transform or build upon this work, you may distribute the
resulting work only under the same, similar or compatible liscense.

ISBN 978-84-121011-6-4

Printed by Ediciones Gráficas Rey, S.L.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Hi ha un escola perduda allà al mig del Montseny
on només hi estudien els nens...
On només hi estudien els nens que somien en truites.

– Albert Pla

Yo he preferido hablar de cosas imposibles porque de lo posible se sabe demasiado.

– Silvio Rodríguez

Real stupidity beats artificial intelligence every time.

– Terry Prachett

A tots els que han sofert aquest llarg camí...





Agraïments

It is good to have an end to journey toward;
but it is the journey that matters, in the end.

– Ursula K. Le Guin

Finalment, un dijous de Corpus, és a dir de Patum, em trobo escrivint aquestes
línies. Potser les més difícils d’aquesta tesi per la gran quantitat de gent que he
d’agrair i no vull oblidar.

Realitzar una tesi no ha estat només un camí de formació en la recerca, sinó
també de formació en la vida mateixa. Aquests anys m’han brindat la possibilitat
de conèixer molta gent, tant d’aquí com de fora. Ara que arribo al final, i dono un
cop d’ull a tot el que he deixat endarrere, m’adono de tota l’ajuda, coneixement
i comprensió de les quals he gaudit. Voldria començar amb un agraïment sincer
a totes les persones que s’han creuat amb mi al llarg d’aquest camí. Sou moltes,
i espero que la majoria us trobeu interpel·lades en els següents paràgrafs però, si
no és així, no és per mala fe, sinó que es fa difícil encabir a tothom en aquestes
poques línies. A tots vosaltres, moltes gràcies!

Aquesta tesi no existiria si no fos pel Josep i l’Alícia. No només per ser els
directors d’aquesta, sinó per haver-me mostrat, ja fa uns quants anys, que és
realment el món de la visió per computador. En aquell temps, mentre encara
era estudiant de la carrera, em van donar l’oportunitat d’entrar com a becari al
CVC. Crec que aquest va ser el punt d’inflexió que em va fer decidir a fer el salt per
realitzar el meu doctorat. Vull agrair al Josep, que hagi sigut capaç de treure temps
d’on no en tenia per poder-se reunir, corregir el que escrivia i donar-me idees noves
per poder seguir endavant. A l’Alícia, vull agrair-li haver tingut sempre la porta
oberta per discutir com enfocar els diferents problemes que m’anaven sorgint. En
definitiva, moltes gràcies als dos, sense vosaltres aquest document no hauria vist
mai la llum. Així doncs, aquesta tesi, també és vostra.

I take the chance to sincerely acknowledge Andreas Fischer, Joan Bruna and
Daniele Panozzo for welcome me at their respective research groups in the Uni-
versité de Fribourg and the New York University. You made me feel at home
at both Fribourg (Switzerland) and New York (USA). I would like to extend my

i



more sincere appreciation to all the friends, collegues and people I shared some
time in these places. Specially, Michele Alberti, Vinaychandran Pondenkandath,
Teseo Schneider, Francis Williams, Francisca Gil, Davi Colli, Zachary Ferguson
and Bolun Wang. In addition I would like to thanks the colleagues from omni:us
who shared a boundless number of videocalls during these years. Specially to Lutz
Goldmann.

M’agradaria fer una menció especial a tots els membres del CVC. A les diferents
persones de l’administració i servei d’informàtica, especialment a la Claire, l’Ana
María, l’Alexandra, la Txell, la Montse, al Marc i al Joan. Als companys de dinars
del divendres, en Jordi Font i la Katerine Diaz. En especial al Marçal Rossinyol i
al Juan Ignacio Toledo que, a més a més, també han estat companys de grup. A
la resta de companys de grup, especialment, al Dimosthenis Karatzas, a l’Ernest
Valveny, l’Oriol Ramos i Joan Mas. I, finalment, a tots els amics i companys
del CVC: Pau Rodríguez, Arnau Baró, Edgar Riba, Albert Berenguel, Lei Kang,
Sounak Dey, Pep Gonfaus, Anjan Dutta, Asma Bensalah, Xavier Soria, Manuel
Carbonell i Sanket Biswas, entre molts d’altres. Amb tots vosaltres he compartit
gran part d’aquest camí, entre xerrades, cafès i cervesetes. Heu estat font de suport
i inspiració durant tota aquesta recerca!

No voldria acabar sense tenir un record pels amics. En especial al Pep, el
Víctor i el Joan per haver-hi estat i ser-hi, sempre. També a l’Imma, que em va
obrir la porta al món dels grafs.

A l’Anna vull agrair-li haver aparegut a la meva vida amb un gran somriure i en
el moment adequat. En aquests darrers mesos, sempre has sabut donar-me forces
en els moments que més ho necessitava. Sense tu, això no hauria estat possible.
T’estimo.

A la meva família, als meus avis, l’Alfonso, la María de los Ángeles, l’Albert
i l’Elvira. També als meus tiets i cosins. A la Pilar, que ha estat al meu costat
durant tot aquest temps.

I, per últim, als meus pares, l’Àngels i el Joan. Heu estat el meu suport
incondicional i la meva font d’inspiració per arribar fins aquí. Gràcies per animar-
me a seguir endavant i a animar-me a fer el que em feia feliç.

Berga, 9 de setembre de 2020

ii



Abstract

From its early stages, the community of Pattern Recognition and Computer Vision
has considered the importance of leveraging the structural information when un-
derstanding images. Usually, graphs have been selected as the adequate framework
to represent this kind of information due to their flexibility and representational
power able to codify both, the components, objects, or entities and their pairwise
relationship. Even though graphs have been successfully applied to a huge variety
of tasks, as a result of their symbolic and relational nature, graphs have always
suffered from some limitations compared to statistical approaches. Indeed, some
trivial mathematical operations do not have an equivalence in the graph domain.
For instance, in the core of many pattern recognition applications, there is a need
to compare two objects. This operation, which is trivial when considering feature
vectors defined in Rn, is not properly defined for graphs.

Along this dissertation the main application domain has been on the topic of
Document Image Analysis and Recognition. It is a subfield of computer vision
aiming at understanding images of documents. In this context, the structure and
in particular graph representations, provides a complementary dimension to the
raw image contents.

In computer vision, the first challenge we face is how to build a meaningful
graph representation that is able to encode the relevant characteristics of a given
image. This representation should find a trade off between the simplicity of the
representation and its flexibility to represent the deformations appearing on each
application domain. We applied our proposal to the word spotting application
where strokes are divided into graphemes which are the smaller units of a hand-
written alphabet.

We have investigated different approaches to speed-up the graph comparison in
order that word spotting, or more generally, a retrieval application is able to han-
dle large collections of documents. On the one hand, a graph indexing framework
combined with a votation scheme at node level is able to quickly prune unlikely
results. On the other hand, making use of graph hierarchical representations, we
are able to perform a coarse-to-fine matching scheme which performs most of the
comparisons in a reduced graph representation. Besides, the hierarchical graph

iii



representation demonstrated to be drivers of a more robust scheme than the origi-
nal graph. This new information is able to deal with noise and deformations in an
elegant fashion. Therefore, we propose to exploit this information in a hierarchical
graph embedding which allows the use of classical statistical techniques.

Recently, the new advances on geometric deep learning, which has emerged as a
generalization of deep learning methods to non-Euclidean domains such as graphs
and manifolds, has raised again the attention to these representation schemes.
Taking advantage of these new developments but considering traditional method-
ologies as a guideline, we proposed a graph metric learning framework able to
obtain state-of-the-art results on different tasks.

Finally, the contributions of this thesis have been validated in real industrial
use case scenarios. For instance, an industrial collaboration has resulted in the
development of a table detection framework in annonymized administrative doc-
uments containing sensitive data. In particular, the interest of the company is
the automatic information extraction from invoices. In this scenario, graph neu-
ral networks have proved to be able to detect repetitive patterns which, after an
aggregation process, constitute a table.

Keywords – Computer Vision, Pattern Recognition, Graph-based Representa-
tions, Graph Indexing, Hierarchical Graphs, Graph Embeddings, Graph Neural
Networks, Graph Edit Distance, Table Detection.

iv



Resum

Des del seu inici, la comunitat investigadora sobre Reconeixement de Patrons
i Visió per Computador ha reconegut la importància d’aprofitar la informació
estructural de les imatges. Els grafs s’han seleccionat com el marc adequat per
representar aquest tipus d’informació a causa de la seva flexibilitat i poder de
representació capaç de codificar, tant els components, objectes i entitats com les
seves relacions. Tot i que els grafs s’han aplicat amb èxit a una gran varietat de
tasques -com a resultat de la seva naturalesa simbòlica i relacional- sempre han
patit d’algunes limitacions comparats amb mètodes estadístics. Això es deu al
fet que algunes operacions matemàtiques trivials no tenen una equivalència en el
domini dels grafs. Per exemple, en la base de moltes aplicacions de reconeixement
de patrons hi ha la necessitat de comparar objectes. No obstant això, aquesta
operació trivial no està degudament definida per grafs quan considerem vectors de
característiques definits en Rn.

Al llarg d’aquesta recerca, el principal domini d’aplicació està basat en el tema
de l’Anàlisi i Reconeixement d’Imatges de Documents. Aquest és un subcamp de
la visió per computador que té com a objectiu compendre imatges de documents.
En aquest context, l’estructura -particularment la representació en forma de graf-
proporciona una dimensió complementària al contingut de la imatge.

En visió per computador la primera dificultat que ens trobem recau en con-
struir una representació significativa de grafs capaç de codificar les característiques
rellevants d’una imatge donada. Això es deu al fet que és un procés que ha de
trobar un equilibri entre la simplicitat de la representació i la flexibilitat, per tal de
representar les diferents deformacions que apareixen en cada domini d’aplicació.
Hem estudiat aquest tema en l’aplicació de la recerca de paraules, dividint els
diferents traços en grafemes –les unitats més petites d’un alfabet manuscrit–.

També, hem investigat diferents metodologies per accelerar el procés de com-
paració entre grafs perquè la recerca de paraules o, inclús, de forma més general,
l’aplicació en la recerca de grafs, pugui incloure grans col·leccions de documents.
Aquestes metodologies han estat principalment dues: (a) un sistema d’indexació
de grafs combinat amb un sistema de votació en l’àmbit de nodes capaç d’eliminar
resultats improbables i (b) usant representacions jeràrquiques de grafs que duen

v



a terme la majoria de les comparacions en una versió reduïda del graf original,
mitjançant comparatives entre els nivells més abstractes i els més detallats. A més
a més, la representació jeràrquica també ha demostrat obtenir una representació
més robusta que el graf original, lidiant amb el soroll i les deformacions de manera
elegant. Per tant, proposem explotar aquesta informació en forma de codificació
jeràrquica del graf que permeti utilitzar tècniques estadístiques clàssiques.

Els nous avenços en aprenentatge profund geomètric han aparegut com una
generalització de les metodologies d’aprenentatge profund aplicades a dominis no
Euclidians –com grafs i varietats–, i han promogut un gran interès en la comunitat
científica per aquests esquemes de representació. Així doncs, proposem una dis-
tància de grafs capaç d’obtenir resultats comparables a l’estat de l’art en diferents
tasques aprofitant aquests nous desenvolupaments, però considerant les metodolo-
gies tradicionals com a base.

També hem realitzat una col·laboració industrial amb la finalitat d’extreure
informació automàtica de les factures de l’empresa (amb dades anònimes). El
resultat ha estat el desenvolupament d’un sistema de detecció de taules en doc-
uments administratius. D’aquesta manera les xarxes neuronals basades en grafs
han demostrat ser aptes per detectar patrons repetitius, els quals, després d’un
procés d’agregació, constitueixen una taula.

Paraules Clau – Visió per Computador, Reconeixement de Patrons, Repre-
sentacions basades en Grafs, Indexació de Grafs, Grafs Jeràrquics, Codificació de
Grafs, Xarxes Neuronals en Grafs, Distància d’Edició de Grafs, Detecció de Taules.

vi



Resumen

Desde sus inicios la comunidad que investiga el Reconocimiento de Patrones y la
Visión por Computador ha reconocido la importancia de aprovechar la informa-
ción estructural de las imágenes. Los grafos se han seleccionado como el marco
adecuado para representar este tipo de información, a causa de su flexibilidad y
poder de representación capaz de codificar tanto los componentes, los objetos o las
entidades, como sus relaciones. Aunque los grafos se han aplicado con éxito a una
gran variedad de tareas –como resultado de su naturaleza simbólica y relacional–,
siempre han sufrido algunas limitaciones comparados con los métodos estadísticos.
Esto se debe al hecho que algunas operaciones matemáticas triviales no tienen una
equivalencia en el dominio de los grafos. Por ejemplo, en la base de la mayoría de
aplicaciones de reconocimiento de patrones hay la necesidad de comparar objetos.
No obstante, esta operación trivial no está debidamente definida por grafos cuando
consideramos vectores de características definidos en Rn.

Durante la presente investigación, el principal dominio de aplicación se basa
en la temática del Análisis y Reconocimiento de Imágenes de Documentos. Este
es un subcampo de la visión por computador que tiene como objetivo compren-
der imágenes de documentos. En este contexto, la estructura -particularmente la
representación en forma de grafo- proporciona una dimensión complementaria al
contenido de la imágen.

En visión por computador la primera dificultad que nos encontramos se basa
en construir una representación significativa de grafos que sea capaz de codificar
las características relevantes de una imagen. Esto se debe a que es un proceso
que tiene que encontrar un equilibrio entre la simplicidad de la representación
y la flexibilidad, para representar las diferentes deformaciones que aparecen en
cada dominio de la aplicación. Hemos estudiado este tema en la aplicación de la
búsqueda de palabras, dividiendo los diferentes trazos en grafemas –las unidades
más pequeñas de un alfabeto manuscrito–.

Tambien, hemos investigado diferentes metodologías para acelerar el proceso
de comparación entre grafos para que la búsqueda de palabras o, incluso, de forma
más general, la aplicación de búsqueda de grafos, pueda incluir grandes colecciones
de documentos. Estas metodologías han estado principalmente dos: (a) un sistema

vii



de indexación de grafos combinado con un sistema de votación en el ámbito de los
nodos capaces de eliminar resultados improbables y (b) usando representaciones
jerárquicas de grafos que llevan a término la mayoría de las comparaciones en una
versión reducida del grafo original mediante comparativas entre los niveles más ab-
stractos y los más detallados. Asimismo, la representación jerárquica también ha
demostrado obtener una representación más robusta que el grafo original, además
de lidiar con el ruido y las deformaciones de manera elegante. Así pues, pro-
ponemos explotar esta información en forma de codificación jerárquica del grafo
que permita utilizar técnicas estadísticas clásicas.

Los nuevos avances en el aprendizaje profundo geométrico han aparecido como
una generalización de las metodologías de aprendizaje profundo aplicadas a domin-
ios no Euclidianos –como grafos y variedades–, y han promovido un gran interés
en la comunidad científica por estos esquemas de representación. Proponemos una
distancia de grafos capaz de obtener resultados comparables al estado del arte
en diferentes tareas aprovechando estos nuevos desarrollos, pero considerando las
metodologías tradicionales como base.

También hemos realizado una colaboración industrial con la finalidad de extraer
información automática de las facturas de la empresa (con datos anónimos). El
resultado ha sido el desarrollo de un sistema de detección de tablas en documentos
administrativos. Así pues, las redes neuronales basadas en grafos han demostrado
ser aptas para detectar patrones repetitivos, los cuales, después de un proceso de
agregación, constituyen una tabla.

Palabras Clave – Visión por Computador, Reconocimiento de Patrones, Rep-
resentaciones basadas en Grafos, Indexación de Grafos, Grafos Jerárquicos, Cod-
ificación de Grafos, Redes Neuronales de Grafos, Distancia de Edición de Grafos,
Detección de tablas.

viii



Contents

Agraïments i

Abstract iii

Resum v

Resumen vii

1 Introduction 1
1.1 Setting the Context . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Distilling Patterns from Images . . . . . . . . . . . . . . . . 2
1.1.2 Structural Pattern Recognition . . . . . . . . . . . . . . . . 2
1.1.3 Document Image Analysis and Recognition . . . . . . . . . 3
1.1.4 Deep Learning in Computer Vision . . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objectives and Contributions of this Thesis . . . . . . . . . . . . . 6
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Graph Representations 11

2 Graph Theory for Pattern Recognition 13
2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Error-tolerant Graph Matching . . . . . . . . . . . . . . . . 17
2.3 Graph Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Graph Kernels and Embeddings . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Graph Embedding . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Graph Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Hierarchical Representations . . . . . . . . . . . . . . . . . . . . . . 23

ix



CONTENTS

3 A Graph-based Representation for Handwritten Words 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Word Spotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 A Graph-based Word Spotting Framework . . . . . . . . . . . . . . 30

3.3.1 Graph Construction from a Word Image . . . . . . . . . . . 30
3.3.2 Graph Matching for Word Spotting . . . . . . . . . . . . . 32

3.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Spotting Evaluation . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Information Spotting by Graph Indexing 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Binary Embedding Formulation . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Binary Topological Node Features . . . . . . . . . . . . . . 41
4.2.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Graph Classification . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Architectural Symbol Spotting . . . . . . . . . . . . . . . . 50
4.3.4 Handwritten Word Spotting . . . . . . . . . . . . . . . . . . 53

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Hierarchical Representation for Robust Matching 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Hierarchical Attributed Graph Representation . . . . . . . . . . . . 61

5.2.1 Hierarchical Construction . . . . . . . . . . . . . . . . . . . 61
5.2.2 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3 Splitting of Articulation Points . . . . . . . . . . . . . . . . 65

5.3 Error Tolerant Hierarchical Matching . . . . . . . . . . . . . . . . . 66
5.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Object Classification . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Word Spotting . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Hierarchical Stochastic Graphlet Embedding 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Hierarchical Graph Embedding . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Hierarchical Construction . . . . . . . . . . . . . . . . . . . 77
6.2.2 Hierarchical Embedding . . . . . . . . . . . . . . . . . . . . 78

6.3 Stochastic Graphlet Embedding . . . . . . . . . . . . . . . . . . . . 80
6.3.1 Stochastic Graphlets Sampling . . . . . . . . . . . . . . . . 81
6.3.2 Hashed graphlets distribution . . . . . . . . . . . . . . . . . 82
6.3.3 Hierarchical Stochastic Graphlet Embedding . . . . . . . . 84

6.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 85

x



CONTENTS

6.4.1 Hierarchical Embedding Complexity . . . . . . . . . . . . . 85
6.4.2 Stochastic Graphlet Embedding Complexity . . . . . . . . . 85

6.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.1 Experiments on Molecular Graph Datasets . . . . . . . . . 86
6.5.2 Experiments on Pattern Recognition Datasets . . . . . . . . 88
6.5.3 Parameters Discussion . . . . . . . . . . . . . . . . . . . . . 89
6.5.4 Discussion on the Stochasticity of the Algorithm . . . . . . 91

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Geometric Deep Learning 95

7 Geometric Deep Learning 97
7.1 Geometric Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Node Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Geometric Deep Learning in Computer Vision . . . . . . . . . . . . 103

8 Learning Graph Distances 105
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Related Work on Graph Metric Learning . . . . . . . . . . . . . . . 107
8.3 The Learned Graph Distance Framework . . . . . . . . . . . . . . 109

8.3.1 Learning Node Embeddings . . . . . . . . . . . . . . . . . . 111
8.3.2 Graph Distance or Similarity . . . . . . . . . . . . . . . . . 112

8.4 Training Setting and Learning Objective . . . . . . . . . . . . . . . 113
8.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5.1 Historical Keyword Spotting . . . . . . . . . . . . . . . . . 115
Dataset Description . . . . . . . . . . . . . . . . . . . . . . 115
Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 117
Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 118
Results and Discussion . . . . . . . . . . . . . . . . . . . . . 119

8.5.2 Experimental Comparison to GMN . . . . . . . . . . . . . . 121
Dataset Description . . . . . . . . . . . . . . . . . . . . . . 121
Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 121
Results and Discussion . . . . . . . . . . . . . . . . . . . . . 121

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Table Detection in Invoice Documents 125
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Related Work on Table Detection and Recognition . . . . . . . . . 129
9.3 Table Detection Framework . . . . . . . . . . . . . . . . . . . . . . 130

9.3.1 Graph-based Representation of Invoice Documents . . . . . 131
9.3.2 The GNN Architecture . . . . . . . . . . . . . . . . . . . . 132
9.3.3 Learning Objectives . . . . . . . . . . . . . . . . . . . . . . 134

xi



CONTENTS

9.3.4 Table Detection . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 136

9.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 137
9.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4.4 Structural Constraints . . . . . . . . . . . . . . . . . . . . . 141

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10 Conclusions 145
10.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . 145
10.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.3 Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix 151

A Datasets 153
A.1 Barcelona Historical Handwritten Marriages Database . . . . . . . 153
A.2 IAM Graph Database Repository . . . . . . . . . . . . . . . . . . . 154
A.3 SESYD Floorplans . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.4 Object classification datasets . . . . . . . . . . . . . . . . . . . . . 157
A.5 Molecular Graph Datasets . . . . . . . . . . . . . . . . . . . . . . . 157
A.6 HistoGraph Database . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.6.1 Graph Construction . . . . . . . . . . . . . . . . . . . . . . 159
A.6.2 Subset for Graph Classification . . . . . . . . . . . . . . . . 162

A.7 Table Detection Datasets . . . . . . . . . . . . . . . . . . . . . . . 162

List of Contributions 165

Bibliography 189

xii



List of Tables

3.1 Word Spotting results. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Comparison of the four proposed embeddings with a fixed length of
the local context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Embedding performance using several configurations. . . . . . . . . 48
4.3 Comparison in terms of classification rate. . . . . . . . . . . . . . . 49
4.4 Comparison of the embedding performance for floor plans. . . . . . 52
4.5 Comparison of the embedding performance for floor plans without

the two problematic query symbols. . . . . . . . . . . . . . . . . . 52
4.6 Performance comparison on the BH2M database, changing the min-

imum number of votes for accepting a bounding box. . . . . . . . . 55
4.7 Performance comparison on the BH2M database according to the

cutting value to accept a bounding box. . . . . . . . . . . . . . . . 55
4.8 Performance comparison of word spotting on the BH2M database. 56

5.1 Performance for Object Classification for COIL-100 and ODBK
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Comparison of the proposed hierarchical framework changing the
contraction function in the BH2M dataset. . . . . . . . . . . . . . . 71

5.3 Comparison of the proposed hierarchical framework against an in-
dexation framework introduced in Chapter 4. . . . . . . . . . . . . 71

6.1 Classification accuracies on unlabeled molecular graph datasets. . . 87
6.2 Classification accuracy on labeled molecular graph datasets. . . . . 88
6.3 Results obtained on the AIDS, GREC, COIL-DEL and HistoGraph

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Mean and standard deviation of the accuracies obtained by repeat-

ing the classification task. . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 Dataset overview in terms of number of keywords and word images
for training, validating and testing respectively . . . . . . . . . . . 116

8.2 Study on the GNN model and margin parameter of the proposed
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 Comparison against state-of-the-art on graph-based KWS techniques.119

xiii



LIST OF TABLES

8.4 Comparison against non-graph learning based systems. Mean aver-
age precision (mAP) for graph-based KWS system on AK and BOT
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.5 Performance comparison on the COIL-DEL dataset against the
methodologies introduced in [138]. . . . . . . . . . . . . . . . . . . 122

9.1 Summary of the datasets statistics as well as the proposed division
in train, validation and test sets. . . . . . . . . . . . . . . . . . . . 137

9.2 Study on the GNN model and parameters. . . . . . . . . . . . . . . 139
9.3 Table detection evaluation for the best models from Table 9.2. . . 140
9.4 Node and edge classification performance as well as table node recall

for the best models from Table 9.2. . . . . . . . . . . . . . . . . . . 140
9.5 Comparison against the top-3 approaches from the cTDaR compe-

tition in terms of F1 score at different IoU thresholds. . . . . . . . 143

A.1 Details of the AIDS, GREC, COIL-DEL and HistoGraph datasets. 155
A.2 Details of the molecular graph datasets. . . . . . . . . . . . . . . . 159
A.3 Dataset overview in terms of number of keywords and word images

for training, validating and testing respectively . . . . . . . . . . . 160
A.4 Details of the HistoGraph dataset for graph classification. . . . . . 162
A.5 Summary of the datasets statistics as well as the proposed division

into training, validation and test sets. . . . . . . . . . . . . . . . . 164

xiv



List of Figures

1.1 Graph modeling of the problem called Seven bridges of Königsberg. 3
1.2 Part-based models structure. . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of the present dissertation. . . . . . . . . . . . . . . . . . 9

2.1 Examples of edit paths from one graph to another in terms of in-
sertions, deletions and substitutions. . . . . . . . . . . . . . . . . . 17

3.1 Object detection and Scene graph generation comparison. . . . . . 27
3.2 Example of historical document collections. . . . . . . . . . . . . . 28
3.3 Outline of the graph construction process. . . . . . . . . . . . . . . 31
3.4 Graphemes are extracted from convex groups of the skeleton. . . . 31
3.5 Final graph representation of the proposed construction. . . . . . . 32
3.6 Qualitative results for the query “Farrer”. . . . . . . . . . . . . . . 35
3.7 Problems of the proposed graph-based word spotting approach. . . 36

4.1 Overview of the whole system. . . . . . . . . . . . . . . . . . . . . 42
4.2 Local context of v of length k = 3. . . . . . . . . . . . . . . . . . . 43
4.3 Example of the binary code computation from a labeled graph. . . 44
4.4 Example of the binary code computation from the same graph from

Figure 4.3 adding walks of length 0. . . . . . . . . . . . . . . . . . 44
4.5 Example of the binary code computation from the same graph from

Figure 4.3 disregarding cyclic walks. . . . . . . . . . . . . . . . . . 44
4.6 Examples of graphs from two classes of the dataset. . . . . . . . . 47
4.7 Accuracy vs time comparison. . . . . . . . . . . . . . . . . . . . . . 49
4.8 Example of the elements in our database. . . . . . . . . . . . . . . 51
4.9 Examples of wall problems. . . . . . . . . . . . . . . . . . . . . . . 51
4.10 Examples of elements that are not correctly detected. . . . . . . . 52
4.11 Examples of elements that are not correctly detected in their context. 53
4.12 Qualitative results of the indexation scheme on a whole page. . . . 54

5.1 Ambiguity configuration that significantly influence in the hierarchy
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Example of hierarchy construction for a real graph. . . . . . . . . . 66
5.3 Coarse-to-fine graph matching scheme. . . . . . . . . . . . . . . . . 67

xv



LIST OF FIGURES

5.4 Construction of the hierarchical graph representation for the word
“Dalmau”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Qualitative results for the query “ferrer” extracted from the BH2M
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Avoided comparisons and mAP evolution changing the threshold to
decide whether or not use the second level of the hierarchy. . . . . 73

6.1 Overview of the hierarchical graph notation. . . . . . . . . . . . . . 78
6.2 Overview of stochastic graphlet embedding (SGE). . . . . . . . . . 81
6.3 Plots showing classification accuracies by varying the levels of pyra-

midal graph construction on different datasets. . . . . . . . . . . . 90
6.4 Plots showing classification accuracies by varying the reduction ra-

tio of pyramidal graph construction on different datasets. . . . . . 91
6.5 Plot showing the classification accuracy obtained by SGE by varying

the maximum number of edges. . . . . . . . . . . . . . . . . . . . . 92

7.1 Illustration of a 3-head attention for node 1. . . . . . . . . . . . . . 101
7.2 Overview of the DiffPool methodology. . . . . . . . . . . . . . . . . 102

8.1 First siamese architecture proposed for signature verification. . . . 106
8.2 Illustration of the two models proposed by Li et al. [138]. . . . . . 108
8.3 Illustration of the GraphSim model proposed by Bai et al. [16]. . . 109
8.4 Overview of our distance learning framework. . . . . . . . . . . . . 110
8.5 Assignment problem according to the proposed distance. . . . . . . 113
8.6 Illustration of the triplet learning objective. . . . . . . . . . . . . . 114
8.7 Pre-processed word examples of the four datasets. . . . . . . . . . 116
8.8 Visualization of the learned node correspondance. . . . . . . . . . . 120

9.1 Example of several anonymized administrative documents. . . . . . 127
9.2 Graph representation of an invoice. . . . . . . . . . . . . . . . . . . 128
9.3 Outline of the proposed table detection method. . . . . . . . . . . 131
9.4 Example of several graph representations for administrative docu-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.5 Overview of the proposed GNN architecture for table detection. . . 133
9.6 Evolution of the F1 score using several iterations of the belief prop-

agation and different IoU thresholds. . . . . . . . . . . . . . . . . . 141
9.7 Example of ground-truth table regions on the original documents

and the predicted table regions on the anonymized documents. . . 142

A.1 Examples of pages form different volumes from the Marriage Reg-
ister Books from the Archive of the Barcelona Cathedral. . . . . . 154

A.2 Examples of cropped words from the BH2M dataset. . . . . . . . . 155
A.3 Examples of graphs from two classes of the dataset. . . . . . . . . 156
A.4 Example of the elements in our database. . . . . . . . . . . . . . . 156
A.5 Example of objects from the COIL-100 and ODBK databases. . . . 158
A.6 Pre-processed word examples of the four datasets. . . . . . . . . . 160

xvi



LIST OF FIGURES

A.7 Overview of the graph representations proposed by Stauffer et al. [207]161
A.8 Overview of the table detection datasets. . . . . . . . . . . . . . . . 164

xvii





List of Algorithms

5.1 Hierarchical Graph Construction given an input graph g . . . . . . 62

6.1 Stochastic-Graphlet-Parsing which obtains a set of graphlets S by
traversing g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Hashed-Graphlets-Statistics which creates a histogram h of graphlet
distribution for a graph g. . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Training algorithm for our proposed model. . . . . . . . . . . . . . 114

9.1 Belief propagation algorithm to add consensus between node and
edge predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xix





1 | Introduction

But those with the courage to explore the
weave and structure of the Cosmos, even
where it differs profoundly from their
wishes and prejudices, will penetrate its
deepest mysteries.

– Carl Sagan

In this chapter we introduce the context and motivation of this thesis regarding pat-
tern recognition and computer vision. In particular, structural pattern recognition
and its main challenges in document image analysis are discussed. Moreover, we
summarize the main objectives and contributions of this work. Finally, we outline
the structure and organization of the dissertation.

1.1 Setting the Context

Pattern Recognition is devoted to, in Cristopher M. Bishop words [21], “the au-
tomatic discovery of regularities in data through the use of computer algorithms
and with the use of these regularities to take actions such as classifying the data
into different categories”. Indeed, searching for patterns in nature is not only
exclusive to computer science, but has been done since the dawn of human rea-
soning. From astronomy to biology, observations of such patterns have fostered
the advancements of human knowledge [141]. Back in the Ancient Greece, the
observations of plants from Theophrastus (c. 372 – c. 287 B.C.), considered the
father of botany, discovered that “those that have flat leaves have them in a regular
series”. Similarly, Pliny the Elder (23 – 79 A.D.) talked about “regular intervals”
between leaves “arranged circularly around the branches”. Later in the fifteenth
century, Leonardo da Vinci (1452 – 1519) noted the spiral arrangement of leaf
patterns with cycles of five, which was the first quantitative element added to the
description. Finally, Johannes Kepler (1571 – 1630) pointed out the relation of
the Fibonacci numbers to explain the pentagonal form of some flowers. Similarly
to them, Pattern Recognition has been evolving during last decades finding the
hidden patterns of the data.

1



1. INTRODUCTION

This thesis addresses the problem of Pattern Recognition for the specific case of
document images. In the following sections, we proceed to introduce the relevant
topics and methodologies of this dissertation, starting from a broad perspective
and subsequently entering in depth in specific points.

1.1.1 Distilling Patterns from Images

In the particular case of detecting and understanding patterns from images, Com-
puter Vision emerged as an interdisciplinary field which, as defined by Richard
Szeliski [210], “has been developing mathematical techniques for recovering the
three-dimensional shape and appearance of objects in imagery”. Such an artifi-
cial visual system, requires not only to extract patterns from imaging signals,
but also to interpret and understand them based on some reasoning and previous
knowledge.

Computer vision emerged in the ’60s when artificial intelligence researchers
thought of solving the “visual input” problem, i.e. dealing with imagery as input
data. In particular, Seymour Papert in 1966 proposed a Summer Vision Project1
as a first attempt to construct a significant part of a visual system. In fact, he
claimed it to be “a real landmark in the development of pattern recognition”. Since
then, a boundless number of works have been developed, demonstrating the huge
complexity of this discipline in several tasks such as face detection [220], image
segmentation [20], image matching [145] among others.

1.1.2 Structural Pattern Recognition

In 1741, Leonhard Euler presented a solution of the problem called Seven bridges
of Königsberg [72]. At that time, the city of Königsberg, now Kaliningrad, had
seven bridges over the Pregel River. These bridges connected the mainlands with
two islands as shown in Figure 1.1(a). The problem was to find out whether or
not it is possible to cross all bridges passing just once for each of them. In this
seminal work, Euler established the foundations of the graph theory by modeling
the above problem with the graph in Figure 1.1(b).

Concerning the particular case of computer vision, graph theory emerged as
a tool to model the relationships between the constituent parts of the elements
in the images. Taking into account these relations, the structure of the scene is
incorporated into several frameworks. Part-based models, have been proposed as
a representational framework able to model the relevant items and their pairwise
relationships. In particular, the first part-based models appeared in the 70’s [84]
making use of a reference set of rules. Figure 1.2, reprinted from the original
papers, shows on the one hand, a schematic representation of a face, indicating
its components and their linkages and, on the other hand, a set of parts designed

1Available at http://hdl.handle.net/1721.1/6125

2

http://hdl.handle.net/1721.1/6125


1.1. Setting the Context

(a) (b)

Figure 1.1: Graph modeling of the problem called Seven bridges of Königsberg.
(a) Königsberg map as in 1741. Reprinted from [72]; (b) graph representation of
the problem.

(a) (b)

Figure 1.2: Part-based models structure. Reprinted from [75, 84]

to model a human body. This foundational ideas has been evolving over time
not only defining a reference model, but allowing the different algorithms to learn
object models from training examples [75].

Even though graphs are the appropriate tool to incorporate relationships and
correspondences among relevant items, they present the important downside of
being computationally complex. Several works have addressed this issue among
the years [245]. However, this is still an open issue in the community.

1.1.3 Document Image Analysis and Recognition

Document Image Analysis and Recognition (DIAR) is one of the most relevant
topics of Pattern Recognition. Over the years, DIAR has been the driver of huge
advances on computer vision. For instance, at the early stages of Pattern Recog-

3



1. INTRODUCTION

nition, document images set the paradigms that other topics have later used. An
example is the Sayre’s paradox, which states that, in the context of handwrit-
ten text recognition, individual characters should be previously segmented before
being recognized, but to get a reliable segmentation, each character should be
previously recognized [194]. In particular, lot of efforts were focused on problems
such as Page Layout Analysis (PLA) and Optical Character Recognition (OCR)
techniques. Moreover, DIAR is a multidisciplinary field that, in order to perform
properly, it requires to make use not only of document images but also, depending
on the problem, natural images [58] or NLP techniques [115].

Structural representations, and in particular graphs, have been widely used in
DIAR to deal with a large variety of problems. Bunke [36] compiled the recent
advances in graph-based pattern recognition with applications to DIAR. He ex-
perimentally demonstrated that these techniques have a great potential, in some
cases, even to outperform traditional procedures. Written languages, from the
early Summerian glyphs to modern Latin, Chinese or Arabic scripts, exhibit struc-
tural patterns that are worth to explore. In this sense, recently, graphs have been
proposed to deal with handwritten language [177, 208] and mathematical formu-
las [143, 148].

From all the different applications of DIAR, the automation of administrative
document processing has always received a lot of attention. Even though, in
June 30, 1975, Bloomberg Businessweek prophesized paperless offices2, a major
concern nowadays is the automatic processing of invoice documents [175]. The
main challenge of these documents is the semi-structured nature of their content.
Thus, they do not have a fixed layout, but they share a common set of components,
e.g. header, footer, recipients. However, administrative documents, suppose a big
challenge due to the huge variability of these entities.

1.1.4 Deep Learning in Computer Vision

Deep Learning has transformed a wide variety of applications. It allows com-
puters to “learn” from experience defining complicated concepts with hierarchical
relations from simpler ones [99]. In the last decade, the particular case of deep
neural networks have supposed a breakthrough in computer vision and artificial
intelligence. In fact, the leaders of the deep learning revolution Yoshua Bengio,
Geoffrey Hinton and Yann LeCun were awarded with the 2018 ACM A.M. Turing
laureata3, usually recognized as the “Nobel Prize of computing”.

In 1998, LeCun et al. [132] presented one of the first successful deep learn-
ing models, the LeNet architecture. In particular, the paper faces the handwritten
digit recognition problem which is a classical DIAR task. In addition, they provide
the Modified National Institute of Standards and Technology (MNIST) database

2“The Office of the Future”, Business Week (2387): 48–70, 30 June 1975
3https://awards.acm.org/about/2018-turing

4

https://awards.acm.org/about/2018-turing


1.2. Motivation

consisting of images from handwritten digits. With the emergence of deep learn-
ing, MNIST became the first standard database for benchmarking CNN’s classi-
fiers. Such seminal work setting the foundations of deep learning approaches, was
specifically applied in the context of DIAR.

With the great improvements obtained in the Imagenet Large Scale Visual
Recognition Competition4 (ILSVRC2012) [129], Convolutional Neural Networks
(CNN) [132] have become the standard tool to solve most of the computer vision
problems. Nowadays, it is difficult to think of any computer vision application
that do not use or integrates CNN’s. Furthermore, not only computer vision
has experienced a revolution, but also Natural Language Processing (NLP) and
Speech Recognition. In particular, the advances with Recurrent Neural Networks
(RNN) [46, 107] to deal with sequential data have favored the use of neural net-
works in several fields. Even though the use of Neural Networks is omniscient
today for both two-dimensional imaging data or sequential signals, it is still not
spread out for the case of structural data.

Lately, Geometric Deep Learning5 (GDL) has emerged as a generalization
of deep learning methods to non-Euclidean domains such as graphs and mani-
folds [30]. This field has arised much attention in the recent years allowing the
developed models to encode structural and relational data. Several fields have ben-
efit from this new paradigm, for instance computer vision [239], quantum chem-
istry [95] and computer graphics [97] among others.

1.2 Motivation

Our research is motivated by the recent success of structural representations on the
DIAR domain. In the specific case of DIAR, graphs are able to model the natural
deformations of handwriting, relations of graphical entities, external knowledge or
even implicit relations among different images.

Since the dawn of the deep learning era, DIAR applications have been taking
advantage of the different progresses in that field to achieve outstanding perfor-
mances. Nonetheless, non-Euclidean domains such as graphs and manifolds were
not taking profit of that explosion. It was not until the work of Duvenaud et al. [67]
that deep learning technique successfully extended to this type of data.

This context, at the time of start working on this thesis, defined some challenges
that have guided all our research. On the one hand, following the traditional graph
literature, we wanted to study whether or not, graphs are a valid alternative to
fully appearance-based methodologies. On the other hand, to incorporate deep
learning methodologies to traditional graph-based techniques in order to boost
their performance.

4Available at http://www.image-net.org/challenges/LSVRC/
5http://geometricdeeplearning.com/

5

http://www.image-net.org/challenges/LSVRC/
http://geometricdeeplearning.com/


1. INTRODUCTION

In this thesis, DIAR has been selected as the main application scenario and the
topic which leads our research. However, we aimed on advancing prior arts, not
only on DIAR but also on generic graph-based techniques applied to other topics
such as chemistry or object classification. Therefore, the results presented in this
thesis are interdisciplinary in the pattern recognition field.

Summarizing, the motivation of this dissertation is to incorporate the struc-
ture in computer vision pipelines for classification, retrieval and detection. There-
fore, the problem of the thesis is formulated as structurally-aware techniques
in DIAR application domain.

1.3 Objectives and Contributions of this Thesis

The main objective of this work is to develop novel techniques for image
classification, recognition and retrieval using graphs. In particular, we
propose to exploit the structural information in document collections. In this
dissertation, the structure is applied in two different scenarios. First, as a direct
representation of shapes from images. In this family, graphs based on strokes or
skeletons are considered. Second, the structure of the whole images is taken into
account by considering pairwise relationships between different elements. Thus,
the document structure is not uniquely defined, but depends on the application
scenario.

To this end, we propose to explore two settings. On the one hand, to extend
the traditional approaches to deal with classification and retrieval problems such
as graph matching and graph embeddings. On the other hand, to explore the new
methodologies from geometric deep learning [30] in order to take advantage of this
powerful learning-based settings directly in the graph domain.

In this thesis, the main objective has been divided in several sub-tasks detailed
into the following points.

Graph-based representations

Although graphs have been widely used in the literature, there is no standard
methodology to obtain its representation from a given image. Moreover, in the case
of image retrieval and recognition, the practical success of statistical methodologies
has faded away other schemes representationally richer but practically infeasible
such as graphs.

• Objective: To evaluate if such representations are able to perform in a proper
way for DIAR problems. Thus, to demonstrate them as a valid alternative
to traditional appearance-based systems despite the complexity induced by
graphs natural flexibility.

• Contribution: To achieve this objective, we will contribute with a graph-

6



1.3. Objectives and Contributions of this Thesis

based word spotting approach. Hence, handwritten words are modeled by
means of graphs based on handwritten strokes. The retrieval is then formu-
lated in terms of graph distances.

Large-scale setting

The problem of retrieval involves a large number of distance computations.
Moreover, document collections are huge, therefore, using graph distances as a
retrieval mechanism becomes extremely inefficient taking into account the required
number of graph comparisons.

• Objective: To leverage the power of graph representations for large-scale
scenarios. Hence, to overcome the computational time complexity of these
representations.

• Contribution: Inspired by voting schemes, in this work we propose to deal
with a large-scale graph retrieval taking advantage of a novel graph node in-
dexation. Thus, the retrieval is formulated in terms of node voting according
to its Hamming distance.

Noisy graph representations

Obtaining a graph-based representation from a given image is a difficult task,
usually leading to noisy representations. Thus, the obtained graphs tend to have
spurious nodes and incorrect connections.

• Objective: To obtain abstract graph representations which enhance the orig-
inal graph with high-level information, as well as, hierarchical connections.

• Contribution: Inspired by the works on Maximally Stable Extremal Regions
(MSER) [153], we contribute to structural approaches with a coarse-to-fine
representation for graphs. Therefore, we propose a novel hierarchical con-
struction as well as as new coarse-to-fine graph matching algorithm.

Graph embedding

Until the new advances on geometric deep learning, machine learning tools
were not designed to work directly on graph structures. In the literature, graph
embeddings were proposed in order to obtain a vectorial representation for a given
structure.

• Objective: To define a graph embedding approach able to encode the struc-
tural information at several abstraction levels.

• Contribution: We contribute to the literature by devising a graph embedding
approach making use of the hierarchical information designed in the previous
stage. Hence, graph abstractions and hierarchical relationships are also taken
into account.

7



1. INTRODUCTION

Graph metric learning

With the preeminence of deep learning in machine learning approaches, our
objective is to make use of these techniques to process graph data.

• Objective: To combine the use of deep metric learning techniques with the
emerging field of geometric deep learning.

• Contribution: Inspired by well-known methodologies such as the Hausdorff
edit distance [82], the main contribution of this section is to exploit the
learning framework called geometric deep learning [30] in order to allow our
system to adapt our graph representations to a predefined task.

Structure in invoice documents

Automatic processing of administrative documents have become a major con-
cern on DIAR. Leading technological companies are very interested in this research
field because of their need to process a significant amount of administrative docu-
ments. However, due to the confidential nature of these archives, public datasets
are not available making research problematic.

• Objective: To detect tables in administrative documents. In particular, to
invoice documents where tables do not appear in a regular grid.

• Contribution: For this objective, two contributions are proposed. Firstly,
we release a novel dataset where these documents have been previously
anonymized. Therefore, they do not contain sensitive data or any type of
content information rather than the structure. Finally, we contribute with
an invoice table detection approach based only on the structure of the doc-
ument. The proposed approach is the result of an industrial collaboration.
For confidentiality reasons, they require algorithms able to extract layout
information disregarding the textual content itself.

1.4 Organization

The rest of the dissertation is organized in ten chapters and one appendix struc-
tured in two parts and two global chapters. This division follows the classical
paradigm on graph theory (Part I) and the emerging field of geometric deep learn-
ing (Part II). Figure 1.3 presents the thesis outline with the main relations between
chapters.

PART I: Graph Representations

The first part of this thesis explores the graph theory that has been traditionally
used for Pattern Recognition. In that sense, this part explores the problems of
graph retrieval and classification.

8



1.4. Organization

Figure 1.3: Overview of the present dissertation.

• Chapter 2, presents the methodological basis where this thesis is built upon.
First, the notations and definitions are introduced. Later, the main tech-
niques used for pattern recognition are reviewed.

• In Chapter 3 we present a graph representation specially suitable for hand-
written text. In particular, we face the problem of word spotting in terms
of graph retrieval.

• In Chapter 4 we extensively research on the large-scale nature of graph re-
trieval. Specially, in the context of document analysis, a huge number of
comparisons should be performed while the user will expect an answer in
real time.

• Chapter 5 focuses on enhancing the graph information by describing the
graphs at different abstract levels. These abstractions provide representa-
tions that are able to capture the high-level information of the graph. In this
sense two problems are tackled, firstly, the noisy data produced by the graph
generation and secondly, the large-scale retrieval by performing comparisons
on the abstract graphs which are much smaller than the original ones.

9



1. INTRODUCTION

• Finally, Chapter 6 takes advantage of the defined hierarchy to generate a
graph embedding. The proposed embedding is constructed by graphlet sam-
pling at different hierarchical levels. Thus, the structural information is
preserved at low and high level.

PART II: Geometric Deep Learning

In the last decade, deep learning has been able to solve a huge variety of
problems. In particular, the research has been mainly focused on data defined
in the Euclidean domain. Thus, working with the raw image data or vectorial
representations has been the main trend in computer vision. Therefore, non-
Euclidean data such as graphs or manifolds was not usually considered. However,
the recent advances in the emerging topic of geometric deep learning [30] expanded
the frontiers of graph methodologies.

• In Chapter 7 the theoretical foundations on geometric deep learning as well
as its current trends and challenges are reviewed. Moreover, some works
using these novel methodologies are introduced.

• Chapter 8 extends the idea of graph distances into a learning-based scenario.
Thus, we design a new methodology based on the Hausdorff edit distance [82]
to learn a novel metric space for graphs.

• In Chapter 9, the industrial needs on processing administrative documents
has been taken into consideration. In particular, a industrial contribution
with the German company omni:us6 demonstrate that table detection in
invoice documents is a problem far from being solved. Moreover, require-
ments from their clients demonstrate the need to provide a whole anonymized
framework able to spot tables based on the structure of the documents.

Finally, Chapter 10 draws the thesis conclusions. Moreover, among the con-
tributions, we present a discussion about some future research lines that have
emerged during the development of this thesis.

Together with this work, a compilation of recurrent information along the chap-
ters is provided in form of an appendix. In Appendix A the main datasets used to
evaluate the performance of the proposed methodologies are carefully described.

6https://omnius.com/company/

10

https://omnius.com/company/


Part I

Graph Representations

Structural representations have been widely studied
in the literature. In particular, graph-based repre-
sentations are drivers of more powerful approaches
for visual recognition and retrieval than statistical
approaches. Despite their representational power in
front of classical appearance based models, graphs
have faced some limitations. The main disadvantages
of structural approaches are the time complexity and
scalability. Moreover, the lack of mathematical op-
erations defined in graph domain often makes graph-
based methods unusable.





2 | Graph Theory for Pattern Recognition

If I have seen further
it is by standing on the shoulders of Giants.

– Isaac Newton

This chapter overviews the relevant literature on graph theory and the main ap-
proaches that are relevant in the context of this thesis. Firstly, the main definitions
and notations pertinent to this dissertation are introduced. The notation has been
inspired in the previous works of Riesen et al. [183] and Dutta [62]. Secondly,
the key task, called graph matching, required for using graphs in a pattern recog-
nition scenario, is introduced. Finally, some approaches to deal with structural
representations are presented viz. graph indexing; graph kernels and embeddings;
and hierarchical graph representations.

2.1 Definitions and Notations

A graph is roughly defined as a symbolic data structure describing relations (edges)
between a finite set of objects (nodes). Several formal definitions have been pro-
posed in the literature, the following is a flexible definition which stands for a large
number of tasks including the ones tackled in this thesis.

Definition 2.1.1 (Graph). Let LV and LE be a finite or infinite label sets for
nodes and edges, respectively. A graph g is a 4− tuple g = (V,E, µ, ν) where,

• V is the finite set of nodes, also known as vertices,

• E ⊆ V × V is the set of edges,

• µ : V → LV is the node labeling function, and

• ν : E → LE is the edge labeling function.

|V | denotes the number of nodes of a graph g, namely, the order of the graph and
|E| the number of edges, in other words, the size of the graph. We denote G as
the space of graphs.

13



2. GRAPH THEORY FOR PATTERN RECOGNITION

Based on the definitions of the labeling sets LV and LE , some useful definitions
are provided. On the one hand, Unlabeled or Unattributed graphs are defined
as those graphs obtained by assigning the same label ε to all nodes and edges,
i.e. LV = LE = {ε}. On the other hand, Labeled graphs, also known as, Attributed
graphs are those graphs whose labels are assigned either by a discret set, e.g. a set
of integers L = {1, 2, 3, . . .} or symbolic labels L = {α, β, γ, . . .}; or a continuous
space, e.g. L = Rn, namely, Discrete and Continuous attributed graphs.

Given a graph g = (V,E, µ, ν) ∈ G, we denote an edge e ∈ E according to its
source u and target v nodes, e = (u, v) where u, v ∈ V . Then, u and v are referred
as adjacent nodes. Moreover, the degree of a node u ∈ V , denoted as deg(u), is
the number of incident edges of u. According to the edges, a graph is classified as
directed or undirected graphs.

Definition 2.1.2 (Directed Graph). Let g = (V,E, µ, ν) be a graph, it is a directed
graph if given an edge e = (u, v) ∈ E, the existence of an edge e′ = (v, u) ∈ E is
not assured.

Definition 2.1.3 (Undirected Graph). Let g = (V,E, µ, ν) be a graph, it is an
undirected graph if given an edge e = (u, v) ∈ E, it exists an edge e′ = (v, u) ∈ E
and ν(e) = ν(e′).

Inclusion relationships in graphs are defined in a similar way from the set theory.

Definition 2.1.4 (Subgraph). Given a graph g = (V,E, µ, ν), another graph
g′ = (V ′, E′, µ′, ν′) is said to be a subgraph of g and is denoted by g′ ⊆ g if and
only if,

• V ′ ⊆ V

• E′ ⊆ E

• µ′(u) = µ(u), ∀u ∈ V ′

• ν′(e) = ν(e), ∀e ∈ E′

Moreover, if E′ = E ∩ V ′ × V ′, g′ is known as induced subgraph of g.

In order to study a graph g, we need to mathematically describe its structure. In
the literature, a common way to describe it is by means of the degree matrix, the
adjacency matrix and the Laplacian matrix of g.

Definition 2.1.5 (Degree Matrix). Given a graph g = (V,E, µ, ν), with |V | = n
nodes, the degree matrix D = (dij)n×n of the graph g is defined by

dij =

{
deg(vi) if i = j

0 otherwise

where vi ∈ V .

14



2.2. Graph Matching

Definition 2.1.6 (Adjacency Matrix). Given a graph g = (V,E, µ, ν), with |V | =
n nodes, the adjacency matrix A = (aij)n×n of the graph g is defined by

aij =

{
1 if (vi, vj) ∈ E
0 otherwise

where vi, vj ∈ V .

Definition 2.1.7 (Laplacian Matrix). Given a graph g = (V,E, µ, ν), with |V | =
n nodes, the Laplacian matrix L = (lij)n×n of the graph g is defined by

lij =


deg(vi) if i = j

−1 if i 6= j and (vi, vj) ∈ E
0 otherwise

where vi, vj ∈ V .

Observe that the edges on a graph define the node connectivity. In that sense, the
graph is navigated through its edges. Thus, some definitions arise depending on
the way the graph is navigated.

Definition 2.1.8 (Walk). A walk is a sequence of edges which joins a sequence
of vertices.

Definition 2.1.9 (Trail). A trail is a walk in which all edges are distinct.

Definition 2.1.10 (Path). A path is a trail in which all vertices are distinct.

2.2 Graph Matching

In the core of many pattern recognition applications there is the need to compare
two objects. This operation, which is trivial when considering feature vectors,
is not properly defined in graphs [50, 85]. In addition, taking into account fea-
ture vectors defined in the Rn space, each vector position i usually encodes the
same information and is efficiently compared. However, due to the inherent graph
flexibility, we are forced to adopt some definitions ad hoc to particular purposes.

Definition 2.2.1 (Graph Comparison Problem [22]). Let g1 = (V1, E1, µ1, ν1)
and g2 = (V2, E2, µ2, ν2) be two graphs from G, the graph comparison problem is
to find a function

d : G × G → R

such that d(g1, g2) quantifies the dissimilarity (similarity) of g1 and g2.

In general, the terms graph matching and graph comparison do not refer to the
same problem. The first one is defined as the task of finding a mapping operation

15



2. GRAPH THEORY FOR PATTERN RECOGNITION

between nodes and edges of two graphs, whereas the second one aims to quantify
a (dis)similarity score between them. However, in the literature, graph matching
and graph comparison sometimes are interchangeable used as the former one is
just used to compute a proximity measure.

The notion of identity is the first that emerges when dealing with comparison
problems. Thus, the goal of exact graph matching is to decide whether two graphs,
or at least a (sub)graph of them, are identical in terms of structure and labels.
Then, the identity between two graphs g1 and g2 is established by a mapping
function called graph isomorphism.

Definition 2.2.2 (Graph Isomorphism). Given two graphs g1 = (V1, E1, µ1, ν1)
and g2 = (V2, E2, µ2, ν2), a graph isomorphism is a bijective function f : V1 → V2

satisfying

• µ1(u) = µ2(f(u)), ∀u ∈ V1,

• ∀e1 = (u, v) ∈ E1, ∃e2 = (f(u), f(v)) ∈ E2 such that ν1(e1) = ν2(e2),

• ∀e2 = (u, v) ∈ E2, ∃e1 = (f−1(u), f−1(v)) ∈ E2 such that ν1(e1) = ν2(e2).

The two graphs g1 and g2 are called to be isomorphic, and denoted by g1
∼= g2, if

and only if there exists a graph isomorphism between them.

In 1979, graph isomorphism was included in a list of three decision problems
for which it was not yet known whether they are P or NP-complete. The other
two classical problems are linear programming (LP) and prime number testing
(PRIMES). Nowadays, these two problems have been proved to belong to P in [10]
for LP and in [2] for PRIMES. Moreover, researchers have defined a new class called
GI as the set of problems with a polynomial-time Turing reduction to the graph
isomorphism problem. Then, graph isomorphism is a GI-complete problem [154].
Babai [13] demonstrated that computing graph isomorphisms in quasi-polynomial
time is possible.

Equivalently, the graph isomorphism definition is extended to subgraphs. Now,
the idea is just to find a part of a graph which is identical to a another graph.

Definition 2.2.3 (Subgraph Isomorphism). Let g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2) be graphs. An injective function f : V1 → V2 is a subgraph iso-
morphism if there exists a subgraph g ⊆ g2 such that f is a graph isomorphism
between g1 and g.

Subgraph Isomorphism is a well-known NP-complete problem.

Even though these definitions define relations between two graphs in a similar fash-
ion as equality for sets, in pattern recognition we are interested in the possibility
of comparing two graphs in a more flexible way.

16



2.2. Graph Matching

2.2.1 Error-tolerant Graph Matching

In pattern recognition, the constraints imposed by exact graph matching are unre-
alistic for real applications. Usually, real data is noisy and the extracted represen-
tation is influenced by this noise. Error-tolerant or inexact graph matching aims
to establish a (sub)graph isomorphism that may include some distortions. The
type of distortions that are considered are application dependent. For instance,
Zhou and de la Torre [245] proposed to factorize the large pairwise affinity matrix
into smaller matrices that encode, on the one hand, the local node structure of
each graph and on the other hand, the pairwise affinity between nodes and edges.

One of the most popular error-tolerant graph matching methods is based on the
Graph Edit Distance (GED) [34, 88, 192]. Roughly speaking, the problem consists
in finding the minimum transformation cost of one of the graphs such that an
isomorphism exists between the transformed graph and the second one. Formally,
GED is defined as,

Definition 2.2.4 (Graph Edit Distance). Let g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2) be the source and the target graphs respectively. The graph edit
distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,e2)∈Υ(g1,g2)

k∑
i=1

c(ei),

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and c(e)
denotes the cost function measuring the strength of the edit operation e.

A typical distortion model is inspired by string matching. It includes the insertion,
deletion and substitution of both vertices and edges. However, other operations
such as node split or merge can be considered. These distortions are called edit
operations and have an associated cost. Figure 2.1 illustrates an edit path be-
tween two graphs. Usually, branch and bound techniques are used to compute the
minimum cost edit sequence from one graph to another. However, its complexity
is exponential in the number of nodes of the involved graphs. Thus, approximate
or suboptimal variations of graph edit distance have been proposed to overcome
this difficulty.

Figure 2.1: Examples of edit paths from one graph to another in terms of inser-
tions, deletions and substitutions. Reprinted from [183].

The Assignment Edit Distance (AED) also known as Bipartite Graph Match-
ing [181] is one of the most efficient methods for error-tolerant graph matching. It

17



2. GRAPH THEORY FOR PATTERN RECOGNITION

is based on defining a matrix of edit costs between the nodes of both graphs. The
best correspondence between nodes is found by a linear assignment method.

The matrix definition for the AED algorithm takes into consideration both, the
local structure of the vertices and their attributes. Let gq = (Vq, Eq, µq, νq) be
the input or query graph and gt = (Vt, Et, µt, νt) be the target graph with Vq =
{u1, . . . , un} and Vt = {v1, . . . , vm}, respectively. The cost matrix C is defined as:

C =



c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞

c2,1 c2,2 · · · c2,m ∞ c2,ε
. . .

...
...

...
. . .

...
...

. . . . . . ∞
cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε
cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . . . . . ∞
...

. . . . . . 0
∞ · · · ∞ cε,n 0 · · · 0 0


where ci,j denotes the cost of a node substitution c(ui → vj); ci,ε denotes the
cost of a node deletion c(ui → ε); and cε,j denotes the costs of a node insertion
c(ε → vj). A suboptimal graph edit distance between gq and gt is computed by
a linear assignment algorithm [159]. A key decision in the matching algorithm is
the definition of the cost functions.

This algorithm is able to obtain an upper bound of the real GED with a cubic
time complexity of O(n3) where n = |Vq|+ |Vt|.

Despite obtaining a good approximation, the time complexity of the AED algo-
rithm is still a problem for some applications where the time is an important
constrain. In order to alleviate this issue, Fischer et al. [82] proposed the Haus-
dorff Edit Distance (HED) which is a lower bound approximation of the real GED
with a quadratic time complexity of O (n1 · n2) where n1 = |Vq| and n2 = |Vt|.

HED is based on the Hausdorff distance (HD) of two sets A and B on a metric
space. With a given metric d(a, b) where a ∈ A and b ∈ B, HD is defined as

H(A,B) = max
(

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)
.

For finite sets A, B the Hausdorff distance is defined as

H(A,B) = max
(

max
a∈A

inf
b∈B

d(a, b),max
b∈B

inf
a∈A

d(a, b)
)
.

By definition, the Hausdorff distance is very sensitive to outliers. Hence, in their
work they propose to replace the maximum operator with the summation opera-
tion, which forces the distance to take into account all nearest neighbour distances
and becomes more robust to noise than the original one. Thus, the new distance

18



2.3. Graph Indexing

is defined as
Ĥ(A,B) =

∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(a, b). (2.1)

From Equation 2.1 a new distance on graphs is defined. Given two graphs g1 =
(V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2) and a matching cost defined as c = {cn, ce}
for nodes an edges respectively, the HED is defined as,

HED(g1, g2, c) =
∑
u∈V1

min
v∈V2∪{ε}

c∗n(u, v) +
∑
v∈V 2

min
u∈V1∪{ε}

c∗n(v, u) (2.2)

where c∗n(u, v) is a modified node matching cost defined as

c∗n(u, v) =

{
cn(u,v)

2 , if (u→ v) is a substitution
cn(u, v), otherwise.

This redefinition of the node matching cost is needed because HED does not enforce
bidirectional substitutions. Equation 2.2 is composed by a summation, hence, only
if both directions are considered, the full cost will be taken into account. The
same matching algorithm is considered for the edge matching and incorporated in
c∗n(u, v) if needed. Let us consider two sets of edges, P = {p1, . . . , p|u|} adjacent
to u and Q = {q1, . . . , q|v|} adjacent to v, the edge matching cost is

ce(u, v) =
∑
p∈P

min
q∈Q∪{ε}

c∗e(p, q) +
∑
q∈Q

min
p∈P∪{ε}

c∗e(q, p) (2.3)

with the corresponding modified edge matching cost c∗e.

In this setting, the HED finds an optimal assignment per node instead of a global
optimal assignment pretended by the real GED.

A typical drawback of GED approximation algorithm is that they only rely on
local edge structures rather than global information. Some efforts have been made
to improve the performance by increasing the node context at matching time [83].
However, obtaining a better knowledge on the relation of each node within the
graph is still an open issue. Recently, novel deep learning-based approaches have
been proposed in order to address this issue [176].

2.3 Graph Indexing

In spite of the great efforts to obtain efficient algorithms to compare two graphs,
in many applications their use is still unfeasible due to the required number of
comparisons. Thus, an open problem when dealing with these representations
is how to efficiently process graph queries. Let us consider the graph retrieval
problem which is defined as

19



2. GRAPH THEORY FOR PATTERN RECOGNITION

Definition 2.3.1 (Graph Retrival Problem). Given a query graph gq and a
database of graphs DG = {g1, . . . , gT }, a graph retrieval problem consists in finding
the (sub)graphs gi ∈ DG “similar” to gq.

Thus, it is defined as finding inexact (sub)graph matchings between the query and
the target graphs. Then, indexation strategies are required to prune the required
number of graph comparisons.

Performing a sequential search by means of the graph matching algorithms intro-
duced in the previous sections is unfeasible not only because of the inefficiency of
graph matching, but also for the dataset size that has to be accessed. To solve
this problem, graph indexing has been proposed in the literature. The idea is to
build graph indices in order to assist in the processing of graph queries.

Generally, graph indexing is solved by graph factorization techniques where the
dataset of graphs is decomposed into smaller ones representing a codebook of com-
pounding structures. The indexation is therefore formulated in terms of indexing
the constituent graphs organized in a look-up table structure. Usually, path-based
methods are used to split the graphs into small redundant fragments.

For example, GraphGrep [199] enumerates all the existing paths up to a predefined
length. This reduces the search space performing the exact matching using only
few graphs. One of the most relevant and recent works in graph indexing was
proposed by Yan et al. [237]. They propose to use frequent substructures instead of
path-based methods as indexing features. Frequent graph fragments are obtained
by graph sequentialization, according to a depth first search (DFS) traversal of the
graph edges. Edge sequences are organized in a prefix tree called the gIndex tree.
The approach is applied to protein graphs. Another approach proposes to organize
the constituent graphs in a decision tree based in decompositions of permutations
of the adjacency matrix [155]. At run time, subgraph isomorphisms are detected
by means of decision tree traversal. The complexity for indexing is polynomial in
the number of input graph vertices, but the decision tree is of exponential size. A
similar approach based on the construction of a graph lattice was proposed in [193].
The performance for large scale retrieval is achieved by matching many overlapping
and redundant subgraphs. Cheng et al. [44] proposed an indexing technique for
graph databases. It is based on constructing a nested inverted-index, called FG-
index, based on the set of frequent subgraphs. The above methods are good for
graphs with single labels and without strong distortion degree.

2.4 Graph Kernels and Embeddings

Due to graphs symbolic and relational nature, some limitations arise if we compare
them with the traditional statistical (vector-based) representations. For example,
computing pairwise sums or products (which are elementary operations in many
classification and clustering algorithms) is not defined in a standard way in the

20



2.4. Graph Kernels and Embeddings

graph domain. In the literature, a possible way this problem has been addressed
is by means of embedding functions. Two families of graph embeddings can be
distinguished, explicit graph embeddings [35, 93, 147, 193, 201] and implicit graph
embeddings [61, 90, 108, 117]. For the sake of simplicity in the literature they are
usually called graph embeddings and graph kernels respectively. In this dissertation
we will follow that notation.

However, defining such embedding functions is extremely challenging, when the
constraints on time efficiency and the preservation of the underlying structural in-
formation is concerned. The problem becomes even more difficult with the growing
size of graphs, as the structural complexity increases the possibility of noise and
distortion in structure, and raises risk of loosing information.

2.4.1 Graph Embedding

Explicit graph embedding refers to those techniques that aim to explicitly map
graphs to vector spaces. Formally,

Definition 2.4.1 (Graph Embedding). Given a graph domain G, a graph em-
bedding is a function which maps arbitrary graphs from G to a real vector space
Rn,

ϕ : G → Rn

g 7→ ϕ(g)

The methods belonging to this category are further divided into four different
classes according to its nature.

• Graph probing approaches [147], needs measuring the frequency of spe-
cific substructures, that capture content and topology, into graphs. Based
on different graph substructures, such as, nodes, edges, subgraph etc., differ-
ent embedding techniques have been proposed. For example, Shervashidze
et al. [201] studied the non-isomorphic graphlets, albeit, node label and
edge relation statistics are considered by Gibert et al. [93]. Saund in [193],
introduced a bottom up graph lattice in order to efficiently extract the
subgraph features in preprocessed administrative documents, while Dutta
and Sahbi [66] proposed a distribution of stochastic graphlets for embedding
graphs into a vector space.

• Spectral graph theory based methods [37, 114, 125, 127, 186, 232], which
aims to analyze the structural properties of graphs in terms of the eigenvec-
tors/eigenvalues of the adjacency or Laplacian matrices of a graph [232]. Re-
cently, Verma and Zhang [219] proposed a family of graph spectral distances
for robust graph feature representation. Despite of their relative successes,
spectral methods are quite prone to structural noise and distortions.

21



2. GRAPH THEORY FOR PATTERN RECOGNITION

• Those based on Dissimilarity measurements introduced in [167], in this
context, Bunke and Riesen have presented several works on the vectorial
description of a given graph by its distances to a number of pre-selected
prototype graphs [25, 35, 182, 184].

• Geometric deep learning approaches motivated by the recent advances
on deep learning and neural networks. Many researchers have proposed to
utilize neural network for obtaining a vectorial representation of graphs [11,
54, 95, 123, 163].

2.4.2 Graph Kernel

Implicit graph embedding or graph kernel methods is primarily another way to
embed graphs into a vector space. They are also popular for the ability to effi-
ciently extend the existing machine learning algorithms to non-linear data, such
as, graphs, strings, etc. The idea behind graph kernels is to find a function able to
map the input graph into a Hilbert space which basically defines a way to compute
the similarity between two graphs in terms of a dot product.

Definition 2.4.2 (Hilbert Spaces). A Hilbert space H is a finite- or infinite-
dimensional vector space with an inner product 〈·, ·〉 such that the norm defined
by

|f | =
√
〈f, f〉

turns H into a complete metric space.

Definition 2.4.3 (Graph Kernels). Given a graph domain G, a graph kernel,
also known as implicit graph embedding is a function κ : G × G → R such that a
mapping ϕ : G → H to a Hilbert spaceH exists, such that κ(g1, g2) = 〈ϕ(g1), ϕ(g2)〉
∀g1, g2 ∈ G.

Traditionally, graph kernel methods are roughly divided into three main categories:

• Diffusion kernels are based on the similarity measures among the subparts
of two graphs, and then propagating them on the entire structure to obtain
a global similarity measure for two graphs [130, 206].

• Convolution kernels, aim to measure the similarity of composite objects
(modeled with graph) from the similarity of their parts (i.e. nodes) [227].
This type of graph kernel derives the similarity between two graphs g1, g2

from the sum, over all decompositions, of the similarity products of the
subparts of g1 and g2 [161]. Recently, Kondor and Pan [126] proposed multi-
scale Laplacian graph kernel having the property of lifting a base kernel
defined on the vertices of two graphs to a kernel between graphs.

22



2.5. Hierarchical Representations

• Substructure kernels are based on the analysis of the common substruc-
tures that belong to both graphs. This family includes the graph kernel meth-
ods that consider random walks [90, 221], backtrackless walks [12], shortest
paths [23], subtrees [201] and graphlets [203] as the substructure.

Different from the above three categories, Shervashidze et al. [202] proposed a
family of efficient graph kernels on the Weisfeiler-Lehman test of graph isomor-
phism, which maps the original graph to a sequence of graphs. More recently,
inspired by the successes of deep learning, Yanardag and Viswanathan [238] pre-
sented a unified framework to learn latent representations of substructures for
graphs. They claimed that given a pre-computed kernel of graphs, their proposed
technique produces an improved representation that leverages hidden representa-
tions of sub-structures.

2.5 Hierarchical Representations

Hierarchical graph representations depict explicitly relations at different levels,
thus, complex concepts are build from simpler ones. Therefore, obtaining a hier-
archical representation from a given graph explores explicitly abstract information
that appears implicitly in the original graph.

Definition 2.5.1 (Hierarchical Graph). Given a graph h = (V,E, µ, ν), it is a
hierarchical graph if,

• The graph edges are divided in two sets En and Eh namely, the neighbouring
and hierarchical edges, where E = En ∪ Eh and En ∩ Eh = ∅.

• Let LEn
and LEh

be a finite or infinite label sets for neighbouring and
hierarchical edges. Then, we define two functions, νn : En → LEn

and
νh : Eh → LEh

where,

ν(v) =

{
νn(e) if e ∈ En
νh(e) if e ∈ Eh

• The hierarchical graph h can be decomposed in several subgraphs gi =
(V i, Ein, µ, ν) with |V 0| < |V 1| < · · · < |V n| and

– V =
⋃n
i=0 V

i and
⋂n
i=0 V

i = ∅;

– En =
⋃n
i=0E

i
n and

⋂n
i=0E

i
n = ∅.

• The hierarchical edges only relate nodes belonging to contiguous subgraphs
in the sequence, i.e. Eh =

⋃n−1
i=0 E

i
h and Eih ⊆ V i × V i+1.

23



2. GRAPH THEORY FOR PATTERN RECOGNITION

Hierarchical graph representations have been widely used in the literature. These
structural representations have been proposed either to increase the information
provided by a single graph or to obtain a robust representation dealing with de-
formations and noise. An elegant way to deal with these problems is to construct
a hierarchical representation to handle different levels of detail, noise or abstrac-
tion. The idea of using a coarse-to-fine representation for graphs has its analogy in
scale-space representations, like maximally stable extremal regions (MSER) [153]
in images.

Jolion [112] proposed a graph decimation to built hierarchical graphs. Eggert
et al. [69] present the idea of Scale Space Aspect graph for 3D objects. The
Aspect graph is a data structure that incorporates information about a series of
two-dimensional views of the 3D object. This representation captures the struc-
ture of an object using different scale of details. This methodology is able to
deal with object recognition at different resolutions instead of assuming infinitely
high resolution images. This is specially important when some of the features
cannot be found if the image is too small. Ulrich and Steger [215] propose to com-
bine the idea of scale-space aspect graphs with the idea of similarity-based aspect
graphs to develop a fast 3D object recognition approach. Brun and Kropatsch [31]
introduce a set of relationships between regions of a partition through irregular
graph pyramids. This hierarchical representation is used within the segmentation
framework to encode a hierarchy of partitions. Also a segmentation framework is
presented in [98] by Goffe et al. They propose to use a tiled top-down pyramids
allowing different resolution levels of segmentation. In [150], Marfil et al. present
a survey on pyramid segmentation algorithms on regular and irregular pyramids.
Deruyver et al. [56] proposes the use of a semantic graph describing a previ-
ous knowledge and integrate this graph in the decimation process of an adaptive
pyramid. Broelemann et al. [27, 28] propose to deal with noise such as spurious
nodes and edges through a hierarchical representation of plausible graphs. Ahuja
and Todorovic [3] present a region based approach for object recognition based
in multi-scale region segmentation. Conte et al. [49] propose a similar graph
multi-resolution approach in order to improve the object tracking in a video. Re-
cently, Mousavi et al. [158] have proposed a hierarchical representation that is
later used to create an embedding combining the different levels of abstraction.
Their work focuses on enriching a graph embedding with the information provided
by hierarchy levels.

Lately, taking advantage of the new learning-based methodologies, i.e. geometric
deep learning [30], Ying et al. [242] propose to use a graph neural network (GNN)
to learn a hierarchical representation for graph classification.

24



3 | A Graph-based Representation for
Handwritten Words

If you only read the books that everyone
else is reading, you can only think what
everyone else is thinking.

– Haruki Murakami

Graph-based representations have been widely proposed in different fields such as
pattern recognition, bioinformatics or chemistry. Graphs are powerful and flex-
ible representations able to capture the structural information of the data. This
chapter introduces the concept of graph-based representations for patter recogni-
tion, and, in particular, the application scenario is word spotting for handwritten
documents. Contrary to most word spotting techniques, which use statistical rep-
resentations, we propose a structural representation suitable to be robust to the
inherent deformations of handwriting. Attributed graphs are constructed using
a part-based approach. Graphemes extracted from shape convexities are used as
stable units of handwriting, and are associated to graph nodes. Then, spatial
relations between them determine graph edges. Spotting is defined in terms of
an error-tolerant graph matching, namely assignment edit distance. Historical
documents are used as experimental framework. The approach is comparable to
statistical ones in terms of time and memory requirements.

3.1 Introduction

Graph-based representations have been widely used in different fields such as pat-
tern recognition [50, 85, 218], bioinformatics [95], etc. Graphs are powerful and
flexible representations able to describe shapes in terms of relationships between
constituent parts or primitives. However, in some cases, and, in particular in pat-
tern recognition and computer vision, obtaining the graph representation from the
input image is not straightforward.

The practical success of machine learning methods applied to image representa-
tions faded away other schemes representationally richer but with a higher com-
plexity. However, to tackle complex recognition problems, methods not exclusively
based on appearance but enriched with more abstract visual information, such as
visual structure of objects, are required. Although the first attempts of part-based

25



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

descriptors suggesting graph representations were presented long ago [84], it has
been in the last decade when structural models have gained importance in com-
puter vision. Graph representations are implicitly or explicitly drivers of more
powerful approaches for visual recognition and retrieval.

Traditionally, obtaining a graph representation from an image is achieved by means
of some preprocessing steps. Specifically in document analysis where graphical
documents are used, vectorization strategies were quickly adopted. Vectorization
is defined as approximating the binary images to a polygonal representation using
some points, lines, arcs and other entities. A classical vectorization algorithm
is the one proposed by Rosin and West [187]. This algorithm, provides a set of
critical points and the lines codifying whether any two points are connected in
the image skeleton. From this data, several strategies can be used to construct a
graph, for instance, points and lines can be directly considered as nodes and edges.
However, other paradigms can be adopted.

Recently, Scene Graphs [111, 234, 239], defined as a structured representation of
an image, where nodes correspond to object labels and bounding boxes, and edges
correspond to the pairwise relationships between objects, have been adopted as a
new step towards scene understanding. In comparison to other approaches used
for image understanding, such as object detection [174] or image captioning [235],
scene graph generation provide a more detailed knowledge of the image contents
as well as a detailed view of its relations. Lately, with the emergence of deep
learning techniques, methodologies involving scene graphs are gaining importance.
Figure 3.1 presents a a comparison between the information provided by an object
detection approach and a scene graph generation framework.

In this chapter, we propose to tackle the problem of getting a robust and mean-
ingful representation of an image. This problem is studied in the context of DIAR,
in particular, in the word spotting application. Therefore, a desirable graph rep-
resentation must be able to capture the structure of handwritten words while
tolerating the deformations inherent to the different writing styles. In that direc-
tion, we propose a graph representation in terms of a codebook of graphemes [51]
or allographs [196] and their spatial relationships.

The rest of the chapter is organized as follows. First, Section 3.2 introduces the
concept of word spotting and its literature relevant to the current framework.
Then, Section 3.3 describes the graph model used to represent handwritten words
as well as the edit cost operations that have been considered in the error-tolerant
graph matching approach. Section 3.4 reports on the experimental evaluation.
Finally Section 3.5 draws the conclusions and delineates the limitations of the
proposed approach.

26



3.2. Word Spotting

Figure 3.1: Object detection and scene graph generation frameworks comparison.
Object detection produce similar results for two semantically different images, in
comparison, the scene graph approach is able to capture the objects (blue nodes)
and their pairwise relations (red nodes). Reprinted from [234].

3.2 Word Spotting

Word spotting, also known as Keyword spotting (KWS), is a content-based image
retrieval strategy where, due to the impossibility of a recognition process with
enough quality, leans to a visual object detection approach. The key idea of word
spotting relies upon obtaining a robust word image representation and a subse-
quent retrieval scheme. It consists in locating a particular keyword within a docu-
ment. One of the first successful solutions was proposed by Manmatha et al. [149].

KWS has emerged in the last years as a highly effective technique for large scale
document image retrieval in manuscript databases. In some cases, in particular
in historical documents, a strategy based on full transcription using handwrit-
ing recognition approaches, and a subsequent search is nowadays far from being
feasible. Hence, word spotting is a practical alternative. Most of the existing
word spotting techniques use statistical representations (e.g. SIFT, HOG) of the
word images [6, 189]. However, some structural representations have been pro-
posed [208, 224]. The main motivation is that the nature of handwriting suggests
than the structure is more stable than the pure appearance of the strokes. This
is especially important when dealing with the elastic deformations of different
handwriting styles. As stated in the comparison of statistical versus structural
representations for handwritten word spotting reported in [142], the main disad-
vantages of structural approaches are the time complexity and scalability to large

27



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

(a) (b) (c)

Figure 3.2: Example of historical document collections. (a) Llibre de les Espos-
alles; (b) George Washington Papers; (c) Abbey Library of Saint Gall.

document collections.

KWS have been specially successful in historical document collections where the
scarcity of available data and the degradation these documents have suffered due
to conservation issues makes other approaches impractical. Figure 3.2 shows some
examples of historical document collections from different countries and ages.

A word spotting system is defined by two components, (i) a document collection,
also known as gallery; and (ii) an input query word. The output of the system
is the location in the document collection of words with the same contents as the
query. Several divisions of word spotting exist depending on the query, the gallery
and the search algorithm.

Firstly, we have two families of algorithms according to the required or available
data:

• Learning-free: This family of approaches are mostly based on image match-
ing. These methodologies are worth to explore in those settings were labeled
training data is not available or it is hard to obtain.

• Learning-based : These methodologies require a labeled training set to learn
the proper features to use. With the advances on deep learning approaches,
learning-based methods have become more popular in the literature, how-
ever, in a practical scenario, and specially in historical manuscripts, the
amount of data in a collection makes these systems, which are data hungry,
unable to learn meaningful representations.

Secondly, according to the user query, word spotting techniques are divided in two

28



3.2. Word Spotting

groups:

• Query-By-String (QBS): The input query is a string. Usually, these systems
try to find a common space between string models build on character, bigram
or trigram level and some image features [78].

• Query-By-Example (QBE): The input is an image of the word to search [173].

Even though QBS is usually the desired setting for the final user, it requires
labeled datasets in order to train the matching approach. This requirement is not
necessary in QBE methods where learning-free image matching approaches can be
directly used.

Finally, the document collection will define the required feature representation:

• Segmentation-based : This set of approaches assume a previous segmentation
of the words in the documents. Hence, it expects a previous knowledge
of the document structure. In a real scenario, this segmentation is of key
importance due to the impact it has on the final performance as reported by
Dey et al. [57].

• Segmentation-free: In these methodologies, each query is directly searched in
the whole document. Usually these techniques make use of a sliding window
approach. Thus, this second approach is computationally more expensive
but avoids a previous segmentation stage.

The proposed graph-based word spotting system follows the classical setting for a
learning-free QBE approach with segmented words.

Graphs are robust representations able to describe shapes in terms of the rela-
tionships between constituent parts or primitives. They are able to capture the
structural invariance among writer styles or the inherent stroke variability of hand-
writing. One of the first attempts to use graphs-based representations for hand-
written words was proposed by Fischer et al. [80] which defines a Hidden Markov
Model (HMM) based on graph similarity features. However, this approach only
takes into account the graph nodes for the similarity computation.

To the best of our knowledge, the first approach using graphs for the word spot-
ting problem was proposed by Wang et al. [223] and later improved in [224]. The
authors propose a coarse-to-fine graph matching. Firstly, a graph embedding ap-
proach is used to find words likely to be the query one (coarse selection), afterwards
an inexact matching algorithm is employed between connected components and
aligned with Dynamic Time Warping (DTW) to verify the true positives.

At the same time our approach was proposed, Bui et al. [33] developed a graph-
based representation based on invariants (prototype strokes). Edges are created by
means of four spatial encodings (top, bottom, left and right) and a special symbol

29



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

indicating whether they belong to the same connected component or they are the
closest nodes in two adjacent connected components.

Later, Stauffer et al. [208] developed a KWS system based on several graph rep-
resentations, namely, Keypoint, Grid, Projection and Split. They propose to use
an ensemble of those representations to compute a final graph distance. Thus,
four Graph edit distances are computed and aggregated together using different
strategies such as minimum, maximum or mean.

In general, the use of graph matching for word spotting has to deal with two
factors:

1. To obtain robust representation able to tolerate the deformations of hand-
writing without losing the expressiveness in terms of the topology.

2. To overcome the computational cost of traditional graph matching algo-
rithms. Usually, KWS deals with large amounts of data, hence, making use
of these algorithms is unfeasible in a real scenario where the user expects an
answer in a matter of seconds.

3.3 A Graph-based Word Spotting Framework

Even though the structure is the main feature representing handwritten words, a
pure structural approach is unrealistic due to the deformations present in the data.
Thus, the flexibility of graphs allow us to incorporate appearance-based features
to the structural representation. Hence, we have to tackle two problems. First,
the graph construction should be properly defined. This is a crucial step to obtain
a robust representation able to encode the necessary information to build a proper
word spotting system. Afterwards, the graph comparison problem dealing with
this specific representation should be designed.

3.3.1 Graph Construction from a Word Image

A good representation of the word image is crucial to be able to codify the most
characteristic features of each individual handwritten word in order to distinguish
the set of categories by means of graph matching techniques. Moreover, it is also
important to keep the graphs stable against the deformations of handwriting but
robust enough to represent the topology of words in terms of their constituent
primitives. Thus, we propose a graph-based representation for handwritten words
by means of grapheme graphs.

Definition 3.3.1 (Grapheme). A grapheme is each one of the stable constituent
units of handwriting, in other words, it is the smallest unit used in describing the
writing system of a language.

30



3.3. A Graph-based Word Spotting Framework

Figure 3.3: Outline of the graph construction process.

Figure 3.4: Graphemes are extracted from convex groups of the skeleton.

Several works in the literature represent handwriting in terms of graphemes [51]
or allographs [196]. In this dissertation, we propose a novel glyph extraction based
on the convexities found in the vectorization of the handwritten word image.

Figure 3.3 shows the outline of the proposed graph extraction process. Firstly,
the input image is binarized using the classical algorithm proposed by Otsu [164].
The algorithm assumes that the image contains two classes of pixels i.e. black
and white, then it calculates the optimum threshold value separating both classes.
Thus, this algorithm uses the global image information and might be strongly
affected by noise caused by degradation or show-through. Secondly, the binary
image is vectorized by means of the Rosin West vectorization algorithm [187].

In this dissertation, we consider as graphemes the set of convexities present in the
binarized word. To extract the convex paths, the mathematical definition is used,

Definition 3.3.2 (Convex set). We say that a set S is convex if, for all x, y ∈ S,
the line segment connecting x and y is included in S.

Hence, a pair of points in the vectorized skeleton are considered within the same
convex group, if the straight line segment that joins them does not cross any part of
the word skeleton. Figure 3.4 illustrates the convex paths given the word “Dalmau”.
Graphemes are defined as the part of the image foreground extracted from the

31



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

Figure 3.5: Final graph representation of the proposed construction.

geodesic reconstruction from the convex groups. A codebook of graphemes is
defined according to a clustering in terms of the Blurred Shape Model (BSM)
descriptor [71]. The clusters have been generated using all the graphemes in the
database and the k-means algorithm with k different classes.

Using this set of clusters, a codebook of graphemes is extracted. Finally, graph
nodes are associated to the grapheme codewords, and graph edges represent adja-
cency and proximity relations.

As a result, a graph g = (V,E, µ, ν) is generated. Graph nodes V correspond to
graphemes, attributed with the corresponding label codeword of the codebook of
graphemes. Graph edges E represent adjacency relations between nodes, i.e. the
corresponding graphemes are connected in the image. The edge attributes are the
overlap between the corresponding convex groups (we will refer it as edge weight),
the angle and the length. Figure 3.5 depicts the final graph representation with
the corresponding codewords as node attributes.

3.3.2 Graph Matching for Word Spotting

The graph edit distance paradigm has been chosen as a tool to compare two
graphs, in particular, the Assignment Edit Distance (AED) [181] which is a cubic
suboptimal approximation of the real graph edit distance. As it has been intro-
duced in Section 2.2.1, AED is based on defining a matrix of edit costs between
the nodes of both graphs. The best correspondence between nodes is found by a
linear assignment method.

Let gq = (Vq, Eq, µq, νq) be the graph of the query word and gt = (Vt, Et, µt, νt)
be the target graph with Vq = {u1, . . . , un} and Vt = {v1, . . . , vm}, respectively.
In this chapter, we will consider a cost function for both nodes and edges. In both
cases, insertion, deletions and substitutions are considered.

Insertion and deletion costs. Both, node insertion and deletion costs are
computed in the same way, i.e. both are seen as deletions in one graph or the

32



3.3. A Graph-based Word Spotting Framework

other, and therefore, symmetric. Intuitively, the cost is computed in terms of
the local configuration of the node defined by the incident edges. If the node is
strongly connected the cost will be higher than for example a simple node that
appears disconnected. Following this idea, the designed insertion cost has three
terms:

c(ε→ vj) = c(ui → ε) = we0 CweightEdges + we1 Cedges + we2 tvertices, (3.1)

where wei are weighting factors; CweightEdges is the sum of the attributes of the
edges incident to the node being deleted, this cost indicates how much the node is
sharing part of its grapheme with the neighboring ones; Cedges is a measure of the
density of the node computed as the ratio between the number of incident edges
and the total number of graph nodes; tvertices is a constant value experimentally
set as a baseline cost for the edit operation.

Substitution costs. These are computed in terms of the node position, their
label according to the codebook and the similarity of the local structure. The
different terms are weighted by factors denoted with wni. Formally:

c(ui → vj) = wn0Di,j + wn1 CBSM + wn2 Clocal_structure, (3.2)

where wni are different weights; Di,j is the euclidean distance between the spatial
position of the nodes ui and vj position. This distance is normalized by the
maximum node position of the both graphs; CBSM is the L1 distance between the
corresponding BSM shape descriptor of the node graphemes. The value CBSM is
computed with the distance between the centroids of the k-means clustering when
the codebook is extracted; finally, Clocal_structure is the edit operation cost on the
incident edges of the corresponding nodes.

Matching of the incident edges. In order to compute the edit cost on the
adjacent edges Clocal_structure, the AED algorithm has been used again. Firstly, a
matrix of edit costs between the incident edges of both nodes ui and vj is defined,
namely Ce, which shares the same structure as C. In this case, the cost of edge
insertion and deletion is a constant tedges. The substitution costs are computed
in terms of the edge attributes i.e. weight, angle and length, for both edges to
substitute. Therefore, given two edges ei ∈ Eq and fj ∈ Et, the edge substitution
cost is formally defined as

c(ei → fj) = we0 Cweight + we1 Cangle + we2 Clength, (3.3)

where wei are weighting factors; Cweight is the difference between the weight of
the two edges; Cangle is the angle between them and Clength is equivalent to 1 −
eshort/elong, where eshort denotes the length of the shorter edge and elong the length
of the longer one.

The corresponding values the weights and constants have been empirically set as
follows: tvertices = tedges = 0.5 and wn0 = 2/5, wn1 = 1/5, wn2 = 2/5, we0 = 1/5,
we1 = 2/5 and we2 = 2/5. All the cost computations are scaled into the range
(0, 1).

33



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

With the above considerations, given a query word represented by a graph gq and
a set of target images of handwritten documents represented by graphs git, word
spotting is computed as an inexact subgraph matching where several subgraphs of
git are found as being similar to gq.

3.4 Experimental Validation

For validating our approach, a historical keyword spotting application has been
considered as our main application scenario. In this section, we carefully validate
our graph representation for this task.

3.4.1 Experimental Setup

The experimental setup consists of a segmentation-based word spotting scenario.
We have used a set of pre-segmented words with the aim of comparing our approach
with other methods in the literature [142, 223]. In particular, we show that a
graph-based word spotting achieves comparable performance in comparison to
other well-known learning-free approaches.

In this experiment, we have used a subset of the Barcelona Historical Handwritten
Marriages Database (BH2M) [76], which was written in the 17th century. We
have evaluated the performance of our method using the 27 pages used in [142].
This set contains 6, 544 segmented words from 1, 751 different transcriptions. All
the words having at least three characters and appearing at least ten times have
been selected as queries. Thus, there are 514 queries corresponding to 32 different
words.

In terms of size, graphs corresponding to query words have an average of 25 nodes.
It means that since graph matching is a computationally costly process, it might
result in unrealistic elapsed time responses from the application point of view.

The performance has been measured by the mean Average Precision (mAP), a
classic information retrieval metric [190]. First, let us define Average Precision
(AP) as

AP =

∑| ret |
n=1 P@n× r(n)

| rel |
, (3.4)

where P@n is the precision at n and r(n) is a binary function on the relevance
of the n-th item in the returned ranked list, rel is the set of the relevant objects
with regard to the query, and ret is the set of retrieved elements from the dataset.
Then, the mAP is defined as:

mAP =

∑Q
q=1 AP(q)

Q
, (3.5)

where Q is the number of queries.

34



3.4. Experimental Validation

3.4.2 Spotting Evaluation

Table 3.1 shows the quantitative results and compares them to some other methods
in the literature. The proposed approach outperforms most of the methods repre-
senting classical families of approaches in the literature (statistical, structural and
pseudo-structural). We must notice that the aim of this work is to propose graph
matching as a valid alternative for word spotting, in front of the more widespread
techniques usually inspired by statistical pattern recognition.

Method mAP

DTW [142] 19.20
Graph-based [223] 24.60
BoVW [142] 30.00
Loci-based [77] 40.06
nrHOG [5] 56.06
Proposed 51.62

Table 3.1: Word Spotting results.

Some qualitative results are shown in Figure 3.6. It is interesting to notice that
most words have been correctly retrieved. This example takes the name “Farrer”
as a query. The system correctly retrieves the first 11-th words, whereas the 12-th
retrieved word corresponds to the name “Barrer”. This word indeed corresponds
to a very similar word which has the same character length, and only one different
letter.

Query:

Results:

Figure 3.6: Qualitative results for the query “Farrer”.

35



3. A GRAPH-BASED REPRESENTATION FOR HANDWRITTEN WORDS

(a) (b) (c)

Figure 3.7: Problems of the proposed graph-based word spotting approach. (a)
Binarization; (b) Shared letters; (c) Lexical variations.

In particular, some typical problems are easily explainable by the structure of the
text:

Binarization Problem: The binarization step is crucial as it might provoke
degradations in the generation of the graph. This problem appears in one of the
queries “Eularia” showed in Figure 3.7(a).

Sharing Parts: Two different words that share most of their letters may have a
smaller cost than the correct word with a different writing style. For example, in
Figure 3.7(b) “Maria” is retrieved when searching the query “Eularia”.

Lexical Variations: This problem is similar to the last one. In this case, the
word appears with different lexical variations, for example for plural or feminine.
As it is shown in Figure 3.7(c), the query “defunct” has a lower performance than
the others due to this fact.

3.5 Conclusions

In this chapter we have described a graph-based representation for hanwritten
words. In addition, the robustness of this representation has been evaluated in the
classical pipeline for graph-based image retrieval. In particular, the application
scenario is word spotting. First, we have shown that graphemes based on convexi-
ties are stable under the deformations of handwriting. Second, error-tolerant graph
matching approaches have been used to obtain the final ranking. It is important
to notice that this matching approach should be properly defined according to the
provided graph construction. Hence, the edit costs have been properly defined for
our application. Finally, the experimental results demonstrate that our structural
approach is comparable to statistical approaches in terms of performance.

However, two limitations emerge when dealing with graphs. Firstly, graph-based
representation are very sensitive to noise. In the proposed case, noise appears
specially in two construction steps (i) image binarization; and (ii) vectorization.
Binarization generates heavy distortions in case of degraded documents, cluttered

36



3.5. Conclusions

backgrounds or vanishing ink. In case of vectorization, spurious edges may appear
specially close to the end points. These spurious edges will generate extra nodes
that should be managed by the selected matching approach.

The second limitation appears when applying our system to a large-scale retrieval
problem. Even though, in terms of performance it is comparable to statistical
approaches, the time complexity is unacceptable for a final application. This
makes the proposed approach unfeasible for large-scale retrieval.

37





4 | Information Spotting by Graph Indexing

It is not clear that intelligence has any
long-term survival value.

– Stephen Hawking

The huge increase of user-generated contents spread in the cloud has resulted in a
need for services including algorithms for searching by content in large databases.
In the setting introduced in the previous chapter, retrieving a query graph from a
large dataset of graphs implies a high computational time complexity. Hence, it
is unfeasible for real applications. With this in mind, in this chapter we propose
a graph node indexation formalism applied to the visual retrieval task. For this
purpose, binary embeddings are defined as hashing keys for graph nodes. Given a
database of labeled graphs, graph nodes are complemented with vectors of attributes
representing their local context. Then, each attribute vector is converted to a
binary code applying a binary-valued hash function. Therefore, graph retrieval
is formulated in terms of finding target graphs in the database whose nodes have
a small Hamming distance from the query nodes, easily computed with bit-wise
logical operators. As an application example, we validate the performance of the
proposed methods in different real scenarios such as handwritten word spotting in
images of historical documents or symbol spotting in architectural floor plans.

4.1 Introduction

Content-based image retrieval (CBIR) systems [135] have become more complex
in the last years with the increase of the volume of data spread in the cloud.
The huge increase of user-generated contents, e.g. image repositories and videos
in social networks, has resulted in a need for services including algorithms for
searching by content in large databases. At the heart of any retrieval system, a
visual recognition task is present that efficiently searches for similarities between
query and target images. In previous chapters, we have already discussed about
the graph construction problem and the main difficulties faced working on these
flexible representations for CBIR, mainly the time complexity involved at the
graph comparison stage. However, with the increase of data in the cloud, we
require of methodologies able to deal with a large-scale setting where graphs have
been usually avoided.

39



4. INFORMATION SPOTTING BY GRAPH INDEXING

Graphs are robust representations offering a paradigm able to deal with many-to-
many relationships among visual features and their parts. The use of (sub)graph
matching is an effective solution to deal with visual recognition, and in particular
content-based visual retrieval. However, one of the major disadvantages of graph
matching in visual pattern recognition is the need to deal with the huge complexity
of these algorithms. New approaches based on graph embeddings and graph kernels
have emerged rapidly [60, 161]. These methods are based on finding an explicit or
implicit transformation of the graph to a n-dimensional space so the problem of
graph similarity is elegantly reduced to a machine learning problem using classical
classification schemes, e.g. Support Vector Machines (SVM). Other solutions to
reduce the complexity of graph matching are based on graph serialization [64, 185]
consisting in reducing the graph to a sequence so the problem can be solved by an
alignment algorithm in quadratic time. More recently, an efficient approach based
on graph factorization applied to deformable object recognition and alignment
have been proposed [245]. Nowadays, deep learning-based approaches are being
studied for learning graph structure similarities [138].

As stated before, structural information can play an important role in CBIR.
In this scenario, the number of graphs in the database may be extremely large,
and also the graphs may be of a considerable size. Although many suboptimal
methods for graph matching exist, it is unfeasible to compare a query graph with
thousand or million graphs of the database in a sequential way. Therefore, graph
indexing approaches must be introduced. Graph indexing aims at reducing the set
of graphs that must be tested, pruning non promising matchings in the dataset.
A good indexation strategy must be inexpensive in terms of space and time, and
must have a high recall i.e. low number of false negatives.

In this chapter we propose a graph indexing approach in the application domain
of information spotting in document images. Information spotting in document
databases can be defined as retrieving the pages or page regions containing a
given textual or graphical query. Due to the morphology of textual and graphical
symbols, graphs are suitable structures to represent such signs of information.
Efficient information spotting approaches based on graph representations require
indexation strategies that involve error-tolerant isomorphisms. Our approach is
inspired by the ideas of binary encoding for CBIR. The key idea is to extend
the attributes associated to graph nodes by an embedding function describing the
local context of the node. This vector of attributes is converted to a binary code
applying a binary-valued hash function. Therefore, graph retrieval is formulated
in terms of finding target (sub)graphs in the database whose nodes have a small
Hamming distance from the query nodes. These (sub)graphs suggest the image
regions likely to contain an instance of the query. Let us refer them as candidate
regions.

The problem to be solved is based on the concept of focused graph retrieval which
is defined as, let G = {g1, g2, . . . , gn} be a graph dataset and gq be a query graph,
the task aims to find candidate regions crji ⊆ gj , j = {1, 2, . . . , n} where gq is

40



4.2. Binary Embedding Formulation

“similar” to crji , i.e. inexact (sub)graph matching. Hence, we want to perform
an inexact (sub)graph isomorphism in order to find candidate regions crji that are
likely to contain similar structures to the given query.

The application scenario of our work, information spotting in document images
that often contain handwritten information, requires tolerance to high degrees of
distortion. It is also a requirement to capture different visual features by means
of attribute vectors associated to nodes and edges. To achieve these requirements,
we propose a more flexible graph indexing approach based on associating context
descriptors to nodes based on their morphology. These descriptors are encoded by
binary codes. Binary codes are compact descriptors that capture the local context
of an image keypoint, according to a local neighborhood pattern, and represent it
with a vector of bits. One of the most promising local descriptors is the efficient
BRIEF descriptor [39]. BRIEF is a binary descriptor that aims at quickly compar-
ing local features while requiring few amounts of memory. The BRIEF descriptor
outputs a set of bits obtained by comparing intensities of pairs of pixels within the
local key-region. However, other binary descriptors have been proposed with huge
success, some relevant examples are, ORB [188], BRISK [134] and FREAK [4].
The good property of binary codes is that, since they are represented as vectors
of bits, the comparison between two of them can be quickly computed with basic
logical operations, usually XOR, using directly the CPU features.

The rest of this chapter is organized as follows. In Section 4.2 we describe the
scientific contribution of our work. Section 4.3 presents the application scenario
consisting in information spotting in document image databases. Experimentally,
we illustrate the performance of the approach in different databases, namely graph-
ical documents and handwritten ones. Finally Section 4.4 draws the conclusion
and the main difficulties faced by this methodology.

4.2 Binary Embedding Formulation

This section describes the proposed binary embedding formulation which consists
in encoding the local topological context of graph nodes with binary vectors. It
allows to construct a fast indexing scheme in terms of the Hamming distance.
Figure 4.1 shows the pipeline that follows the proposed system. First, the binary
embedding is computed and afterwards the indexation is applied.

4.2.1 Binary Topological Node Features

The Morgan index M of a graph g ∈ G is a node feature, originally used to
characterize chemical structures [157], that computes the node context in terms of
its local neighborhood.

Definition 4.2.1 (Morgan Index). Given a graph g = (V,E, µ, ν), the Morgan

41



4. INFORMATION SPOTTING BY GRAPH INDEXING

Figure 4.1: Overview of the whole system.

index M(v, k) of k-th order of a node v ∈ V , counts the number of walks of length
k incident to node v and starting somewhere in the graph. This index is iteratively
computed as follows

M(v, k) =

{
1, if k = 0∑
u∈N (v)M(u, k − 1) otherwise.

(4.1)

Observe that the Morgan index can be computed using the values obtained from
the exponentiation of the adjacency matrix A. An interesting property of the
adjacency matrix A of any graph g is that the (i, j)-th entry of An denotes the
number of walks of length n from the node vj to the node vi. Therefore, the
Morgan index of order k from a node vi is equivalent to the sum of the elements
on the i-th row of the matrix Ak, formally

M(vi, k) =

|V |∑
j=1

Ak(i, j). (4.2)

Following the Definition 2.4.1, an embedding function ϕ : G → Rn transforms a
graph g ∈ G to an n-dimensional feature vector. Hence, the distance between
two graphs is computed by a distance in a given metric space, and the problem
of graph classification is solved by a statistical learning approach in a faster way.
Inspired by the topological node features proposed by Dahm et al. [52], we define
the local context of a node v as a node embedding function computed in terms
of the topological information of a sub-graph centered at v and considering those
nodes at most at a distance of k hops. Figure 4.2 shows the considered subgraph,
in green, when defining the local context of the node v, with k = 3. We propose
to describe this local context in terms of the Morgan index enriched with the
information of the labels of the neighboring nodes.

Firstly, let us explain a variation of the Morgan index concept. Afterwards, we
will define our node embedding function. Given a graph g = (V,E, µ, ν), let us

42



4.2. Binary Embedding Formulation

Figure 4.2: Local context of v (in green) of length k = 3.

denote as Ml(v, k) the Morgan index of node v ∈ V , order k and label l which
counts the number of walks of length k incident at node v and starting at nodes
labeled as l. According to this definition, we formally define the local context of a
node v as

ϕ(v) =

Kn

k=1

(
n

l∈LV

Ml(v, k)

)
, (4.3)

where ‖ is the concatenation operation and K is the maximum length of the walks
incident to v that are considered. The value ofK is dependent of each experimental
set-up and defines the size of the context considered per each node. Thus, every
graph node is associated to a K · |LV | dimensional feature vector characterizing
the number of walks incident to v of lengths up to K and starting at nodes labeled
with the different possibilities in LV . Remember that according to Definition 2.1.1,
LV is the finite label set for nodes.

Afterwards, the context vector ϕ(v) is converted to a binary code defined as ϕ̃(v) =

{0, 1}K·|LV | in terms of a list of corresponding threshold values T = {ti}K·|LV |
i=1 .

These values are application dependent, and in the use case described in Section 4.3
are set to the mean per each dimension. This binary code formulation, instead of
ϕ(v), speeds up the indexation process with some loss of information.

Figure 4.3 illustrates the computation of the binary codes. In this example, we
have used LV = {A,B} and K = 3, hence, the codes associated to nodes have
length 6 (|LV | = 2). The threshold values are set to the mean of each value
Ml(vi, k) for all vi ∈ V , therefore, T = [ 5

4 ,
10
4 ,

33
4 ,

3
4 ,

8
4 ,

15
4 ].

Until now, we have defined the binary vectors to encode the information of the
topology around a node v. However, node v itself has not been codified. To solve
this, we optionally compute the walks of length 0. It is interpreted as adding a
flag to the vector indicating the label of the node. Figure 4.4 shows the binary
code computation from the graph of Figure 4.3 adding the label information of v.

43



4. INFORMATION SPOTTING BY GRAPH INDEXING

Figure 4.3: Example of the binary code computation from a labeled graph.

Figure 4.4: Example of the binary code computation from the same graph from
Figure 4.3 adding walks of length 0.

The proposed embedding takes into account walks starting and ending in the same
node. These walks may add some redundant and noisy information. The fact of
not considering such cyclic walks, generates a new embedding formulation. Thus,
let us denote as M̂l(v, k) the Morgan index of node v, order k and label l which
counts the number of walks of length k incident to node v starting at nodes labeled
as l but disregarding those ones starting at v, i.e. cycles. Then we optionally allow
to use this new definition on our embedding computation. Following the example
of Figure 4.3, Figure 4.5 shows the new embedding generated by discarding the
cycles during the Morgan Index computation. The different embedding variants
will be compared in the experimental section.

Figure 4.5: Example of the binary code computation from the same graph from
Figure 4.3 disregarding cyclic walks.

44



4.3. Experimental Validation

4.2.2 Indexing

Given the node embedding ϕ̃(·), we propose an indexation scheme based on the
concept of focused graph retrieval previously introduced. In terms of a visual
retrieval application, this process is understood not only retrieving the images of
a database where a query object is likely to appear, but finding a coarse position
in each retrieved image.

An inverted file indexing architecture, in terms of node contexts, is constructed.
It stores a mapping from the binary topological features to the nodes of the target
graphs in the database. This inverted file is therefore formulated as a lookup table
H : {0, 1}b → {vi}vi∈V that indexes a b-bit vector and returns a list of nodes whose
context, defined as the binary code provided by ϕ̃(·), is similar to the input code.

The last step is the actual (sub)graph matching process. With the indexing table
H we only retrieve individual nodes, so it is necessary to implement a node con-
sistency verification. With this purpose, we define a partition P of a graph g as
a decomposition of it in n small (sub)graphs, P (g) = {g1, . . . , gn}, where gi ⊆ g.
Hence, the lookup table H is reformulated as a hashing function that instead of
returning nodes similar to the input binary code, returns (sub)graphs where these
target nodes appear. Formally, given a query graph gq = (Vq, Eq, µ, ν) and a
database of graphs {g1, . . . , gT }, for each node of the query graph v ∈ Vq, the
indexation function H returns the (sub)graphs of the database, containing this
vertex H(v) = {g′q1 , . . . , g

′
qn}, where g

′
qi are n-(sub)graphs of the target graphs

{g1, . . . , gT } contained in the partitions {P (g1), . . . , P (gT )}. The definition of the
partition under which the database of graphs is decomposed in small graphs is
application dependent. In our indexation framework, the (sub)graphs gi defined
by the partition P are seen as voting bins, according to a Hough-based principle.
Thus, the final result consists of the (sub)graphs receiving a high number of votes.

Concerning the practical implementation ofH, the similarity between binary codes
is computed using the Hamming distance. The most straightforward solution is
a brute-force linear scan, i.e. to compute the Hamming distance between the
query vector and each vector in the database. Computing the Hamming distance
between two vectors consists in computing the XOR and counting the number of
1’s in the resulting vector. This is computed very fast on modern CPU’s, with logic
operations being part of the instruction set. A fast hashing process like Locality
Sensitive Hashing (LSH) [109] can be added to speed up the final indexation.

4.3 Experimental Validation

This section is devoted to carefully validate the performance of the proposed graph
indexing approach. The proposed framework is validated in different tasks in order
to provide an overview of its strengths.

45



4. INFORMATION SPOTTING BY GRAPH INDEXING

4.3.1 Experimental Setup

Three experiments have been performed to test the proposed approach. The first
one consists in a graph comparison problem in order to show its effectiveness as a
fast pre-processing step to discard true negatives without losing many true posi-
tives. The next two experiments evaluate the indexation approach in a real scenario
where the graphs appear with several deformations. Moreover, these real scenarios
evaluate our method in the subgraph matching problem. Hence, the selection of
candidates avoids a computationally expensive subgraph matching calculation be-
tween a small query graph and very large target graph. The second experimental
case is addressed to show the efficiency in a subgraph isomorphism scenario. It
consists in locating graphical symbols in architectural floor plan images. Due to
its line-drawing format, these documents are usually represented by graphs, and
hence symbols are located using a subgraph isomorphism. The third case contin-
ues the word spotting experiment in handwritten document images presented in
the previous chapter. The three experimental cases are presented in an incremen-
tal order of difficulty. The first one consists of retrieving individual graphs from
a database. In the second one, graph indexing involves subgraph isomorphism
where the geometric attributes of the queries are compared with rotation and
scale tolerance. In the last one the graphs are distorted because of the noise and
deformations that is present in handwritten text. For the experiments based on
spotting, the objective is to find a good trade-off between the loss in performance
and the speed-up in terms of time.

The evaluation proposed in this work uses the classic metrics used in the context
of information retrieval scenarios [190].

Let ret be the set of retrieved elements from the dataset and rel is the set of
the relevant objects with regard to the query. Let True Positive (TP) be the set
of (correctly) relevant retrieved elements (| ret∩ rel |), False Positive (FP) be the
set of incorrectly retrieved elements (| ret∩rel|), True Negative (TN) be the non
relevant elements that have not been retrieved (|ret∩rel|) and False Negative (TN)
be the relevant elements that have not been retrieved (|ret ∩ rel |).

Three metrics have been chosen for the performance evaluation of the graph index-
ing framework, Precision, Recall and Specificity. Precision (P) is the probability
that a (randomly selected) retrieved element is relevant; Recall (R) is the proba-
bility that a (randomly selected) relevant element is retrieved. Finally, Specificity
(S) is the probability that a non relevant element is properly identified.

Precision =
| ret∩ rel |
| ret |

=
TP

TP + FP

Recall =
| ret∩ rel |
| rel |

=
TP

TP + FN

46



4.3. Experimental Validation

Specificity =
|ret ∩ rel|
|ret|

=
TN

TN + FP

In addition, themean Average Precision (mAP) introduced in the previous chapter
has been used as the performance metric of the proposed word spotting approach.

4.3.2 Graph Classification

Nowadays, graph-based representations have experienced an increase usage in pat-
tern recognition due to their power to represent objects keeping the information of
its structure. Statistical approaches that represent the objects using feature vec-
tors will fail in those cases where the structure is the driver of the main information.
The IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning [180] presents ten graph sets with different characteristics. Fig-
ure 4.6 shows two examples from two distinct classes. These sets come from real
problems that are faced through graph-based representations.

Figure 4.6: Examples of graphs from two classes of the dataset.

For this evaluation we have chosen the GREC subset as it has discrete labels on the
nodes. This dataset consists of graphs representing symbols from architectural and
electronic drawings. These graphs are divided in 22 classes and grouped in three
subsets, on the one hand, the training and validation sets of size 286 each, and on
the other hand, a test set of size 528. Graph nodes represent end points, corners,
intersections and circles of the original symbol. Moreover, they are labeled with
a two-dimensional attribute giving their position. Edges are labeled as line or
arc and an additional attribute specifies the angle with respect to the horizontal
direction or the diameter in case of arcs.

Table 4.1 shows the results of our graph indexing approach on the GREC dataset
using different configurations in terms of absolute number of true positives, false
positives, true negatives, false negatives and recall. First, we have fixed the local
context size (LC) which corresponds to walks of length up to 3. In addition, each
configuration is represented by node flag (NF ) a binary attribute that considers
0-length paths or not and avoid cycles (AC) that disregards cyclic walks or not.

47



4. INFORMATION SPOTTING BY GRAPH INDEXING

From this table, we observe that the highest recall is achieved considering 0-length
paths and cyclic paths. However, avoiding cyclic paths leads to a more restrictive
scenario where more TN are detected without losing too much recall.

Table 4.1: Comparison of the four proposed embeddings with a fixed size of the
local context (LC = 3).

Configuration Metrices

AC NF TP FP TN FN Recall

- - 6090 62531 81613 774 88.72%
- X 6222 56914 87230 642 90.65%
X - 5980 59461 84683 884 87.12%
X X 6065 49074 95070 799 88.36%

Considering the best configuration in terms of AC and NF, Table 4.2 shows a
comparison changing the size of the local context. From the table, we conclude
that changing the size of the local context will cause our approach to be more
restrictive. Hence, recall measure will decrease while avoiding false positives. This
parameter should be set depending on the problem to be solved.

Table 4.2: Embedding performance using several configurations.

LC TP FP TN FN Recall

2 6481 86928 57216 383 94.42%
3 6222 56914 87230 642 90.65%
4 5941 49909 94235 923 86.55%
5 5765 43956 100188 1099 83.99%

Table 4.3 shows a comparison between a state-of-the-art graph matching method
[133] and the same approach but previously filtering the graphs with the proposed
indexation framework. In addition, the results are provided according to different
sizes of the local context (LC). To compute the distances between graphs we have
used the software provided by Riesen et al. with the settings reported in [133]. The
classification rate is obtained using a k-nearest neighbors (k-NN) classifier where
the number of neighbors value ranges between 1 and 9. The indexation approach
uses the same configuration as Table 4.2. It must be noticed that our analysis
reports on how the proposed graph indexation keeps the performance when it is
applied before the baseline graph matching.

Nonetheless, we notice that the best performance is achieved is using 3-NN. In
addition, we keep a similar classification rate applying the proposed indexation.
As it is observed, when the indexation uses a higher local context size, the best
performance is achieved considering only 1 neighbor.

48



4.3. Experimental Validation

Table 4.3: Comparison in terms of classification rate.

k-NN Original [133] LC 2 LC 3 LC 4 LC 5

1 0.9867 0.9867 0.9867 0.9830 0.9830
3 0.9924 0.9905 0.9867 0.9697 0.9602
5 0.9811 0.9697 0.9545 0.9394 0.9186
7 0.9621 0.9413 0.9356 0.9186 0.8864
9 0.9489 0.9299 0.9129 0.8996 0.8409

In terms of time, the original setting takes 182.37 seconds to make 151, 008 com-
parisons. Using LC = 2 these comparisons have been reduced to 93, 409 (more
than 42% reduction) that in average takes 112.58 seconds. For the indexation
step takes 30.55 seconds without optimization using Matlab. Therefore, we have
reduced the time in almost 39 seconds even though the dataset is not very large
and the graph matching is developed in Java which is faster than Matlab.

Figure 4.7: Accuracy vs time comparison.

Figure 4.7 shows a plot according to the obtained accuracy and its corresponding
computation time. Observe that the computation time is drastically reduced while
obtaining an acceptable loss of performance in terms of accuracy.

49



4. INFORMATION SPOTTING BY GRAPH INDEXING

4.3.3 Architectural Symbol Spotting

Nowadays, one of the main interests is information spotting and retrieval in large
document collections. This task is defined as detecting the query information
in a document collection without explicitly recognizing these documents. In this
scenario, one of the most challenging application field is searching and browsing
symbols in graphical documents, known as symbol spotting.

Several structural representations have been proposed for symbol spotting in graph-
ical documents, such as architectural floor plans. Although there are some string-
based representations, e.g. Rusiñol et al. [191] encodes symbols using attributed
strings, most of the approaches use graph-based representations. For example,
Dutta et al. [64] proposed a graph serialization by computing acyclic graph paths;
Luqman et al. [147] proposed to encode graphs by using fuzzy histograms; and
Dutta et al. [63] proposed a dual edge graph representation.

This experiment is an extension of the previous one. The main difference is that
now, the symbols appear in their real context, therefore, a subgraph matching is
required.

We use the dual graphs proposed by Dutta et al. [63], which are constructed from
the SESYD dataset, created by Delalandre et al. [55]. This dataset contains 10
different subsets and 16 query symbols. Figure 4.8 shows two example images
from the SESYD dataset. Each one of the subsets contains 100 synthetically
generated floor plans. All the floor plans in a subset are created from the same
floor plan template by placing different model symbols in different locations in
random orientation and scale. For our experiments, we have taken 20 graphs
from each subset and all the query symbols. Dual graph nodes are labeled with
the vector of Hu moments invariants. Hence, we must discretize it applying a
clustering technique such as k-means (for this experiment we selected 7 clusters).
Dual nodes represent a path in the vectorized image.

As we see in Figure 4.8(a), this representation highly depends on the vectoriza-
tion. Hence, the graphs differ from one symbol instance to another one, especially
when it is contained in a floor plan image. Architectural floor plans are difficult
datasets for indexing approaches such as the one proposed in this chapter. On the
one hand, symbols of different classes are very similar and difficult to distinguish
unless the context is used. On the other hand, the fact that symbols appear con-
nected to building elements such as walls introduces a high degree of distortion
(see Figure 4.9).

In more detail, first, we apply the indexation framework using the graph of a
query symbol against the graph of a floor plan. Second, we obtain a set of votes
in different nodes using a threshold based on the Hamming distance. Third, these
votes are casted in a partition arranged in a grid (of size 100) that is used to
extract the candidate regions.

To decide that one cell of the grid is part of the symbol, it must contain a minimum

50



4.3. Experimental Validation

(a) (b)

Figure 4.8: Examples of the elements in our database. (a) graph representation
of a query; (b) floor plan image where the query should be spotted.

Figure 4.9: Examples of wall problems.

number of votes. This minimum value is set to the 10% of the number of nodes
of the query graph. Then, the image is divided into candidate regions and the
bounding box is computed. The isolated cells are discarded because they are too
small to contain the query symbol. To consider as true positives the retrieved image
regions in comparison to the ground truth regions, we consider an overlapping of
minimum 25%. Note that we aim for a coarse detection rather than to an accurate
matching.

Table 4.4 shows the performance of our approach. The threshold indicates that
the method votes those nodes with a Hamming distance lower than this threshold
value. Here we are facing a subgraph matching problem, so the threshold will
change with respect the previous experiment. These results have been computed
using a local context of size 3, counting the cyclic paths and the 0-lengths paths. By

51



4. INFORMATION SPOTTING BY GRAPH INDEXING

Table 4.4: Comparison of the embedding performance for floor plans.

Threshold Precision Recall

5 12.62% 49.02%
6 10.82% 49.34%

changing the threshold, the precision decreases whereas the recall rapidly increases.
The results report that this application scenario presents several difficulties to be
solved with the proposed method. First, symbols tend to be adjacent, and the
topology is affected. Furthermore, the results are sensitive to the thresholds set
beforehand. Some symbols get too few votes, but if we increase the threshold,
other symbol queries would obtain many false positives detecting big regions.

(a) (b)

Figure 4.10: Examples of elements that are not correctly detected.

Figure 4.10 shows two problematic symbols that clearly influence the results.
These symbols are symmetric and they usually appear next to walls or other
symbols that makes their topology to change a lot. Figure 4.11 shows the same
symbols in their context. As expected, they appear next to the walls, and their
topology is different form the query ones. If we exclude these symbols, the perfor-
mance highly increases, as it is shown in Table 4.5.

Table 4.5: Comparison of the embedding performance for floor plans without the
two problematic query symbols.

Threshold Precision Recall

5 13.06% 67.39%
6 11.29% 68.89%

52



4.3. Experimental Validation

(a) (b)

Figure 4.11: Examples of elements that are not correctly detected in their con-
text.

4.3.4 Handwritten Word Spotting

The third experiment is contextualized in to the area of digital humanities, in
particular the preservation of historical manuscripts stored in archives, libraries
and museums. Once large amounts of documents are digitized, the challenge is
the extraction of information for consultation purposes. Full transcription using
handwriting recognition techniques is not always feasible nowadays because of the
variability of the text styles, the bad physical preservation of the sources, and
because handwriting recognition techniques require large amounts of annotated
images to train, not always available. Word spotting, introduced in the previous
chapter, is an alternative for content indexing. Word spotting is the task of retriev-
ing the instances of a given query word from a document collection. It is usually
formulated in terms of a visual object detection problem, where the query word
and the image words are represented by features invariant to visual distortions.

In the comparison of statistical versus structural representations for handwritten
words reported in [142], the main disadvantages of structural approaches are the
time complexity and scalability to large collections. Methods such as [81] only
use the graph nodes (no edges), and [224] proposed an embedding using a bag of
graphlets (codebook of small graphs, with order 2 or 3). However these approaches
are still not able to efficiently cope with large databases while preserving the graph
structure. Our hypothesis is that the proposed method based on graph indexing
with binary embeddings is of key importance to make structural approaches com-
parable to statistical ones in terms of time and memory requirements for large
document collections.

In our experiments, we have used images from a collection of marriage records from
the Archive of the Barcelona Cathedral. The use of word spotting in this collection

53



4. INFORMATION SPOTTING BY GRAPH INDEXING

allows to search names, places, occupations, etc. To have a clear evaluation of
the indexation system, differently from the previous chapter, we have use the
whole dataset named, The Barcelona Historical Handwritten Marriages Database
(BH2M) [76], which consists of 174 pages from the 17th century. The dataset
is divided in 3 sets, train, validation and test with 100, 34 and 40 page images
respectively. The ground truth consists of the bounding box and transcription of
each word. We used 5170 query words, cropped from these manuscripts. Here,
the word images are represented by attributed graphs where nodes correspond
to basic primitives (graphemes) like loops, vertical lines, arcs, etc. and edges
represent adjacency relations between primitives. This graph representation has
been proposed in the previous chapter.

The experimental case consists in using the graph indexing scheme to retrieve
instances of a given query word. The partition of the target graphs consists in the
subgraphs corresponding to the segmented words. Thus, the votes are accumulated
in the image regions containing words likely to be the query one. Then, we perform
a more accurate search in a partition of the graph around these regions. The
true positives are those regions that contain the correct word and have at least a
minimum amount of votes.

(a) (b)

Figure 4.12: Qualitative results of the indexation scheme on a whole page. (a)
a query word and its corresponding graph; (b) a full page and the locations where
query nodes are detected.

Table 4.6 shows the performance on the BH2M database. There, the specificity and
recall are provided, specificity evaluates how many elements are properly discarded

54



4.3. Experimental Validation

whereas recall takes care of how many relevant elements are considered for the
matching stage. We have used the best configuration among the ones proposed
in subsection 4.3.2, and show the recall and specificity. For this approach, we are
not focusing on the precision but on the rejection of incorrect words in a fast way.
The threshold used in these experiments is 10 and the bins (bounding boxes of
words) must contain at least n votes to consider them as a positive result.

Table 4.6: Performance comparison on the BH2M database, changing the mini-
mum number of votes for accepting a bounding box.

Min. num. of votes Specificity Recall

2 36.17% 93.06%
4 58.53% 80.42%

This table shows that by increasing the minimum number of votes, the specificity
increases, although the recall falls down. This is because there are words of differ-
ent sizes, so if we search a graph with only 5 or 6 nodes it is very difficult to get
enough votes in these regions. To solve that, we normalize the number of votes
adapting it depending on the quantity of nodes in the query. Let us define this
value as |Vq| · x where x is a parameter dependent on the application. The results
changing this parameter are presented in Table 4.7, using the same configuration
and threshold. We correctly detect 50.98% and 61.54% respectively of the non
relevant elements whereas we only miss 10.39% and 15.87% of the relevant ones.

Table 4.7: Performance comparison on the BH2M database according to the
cutting value to accept a bounding box.

x Specificity Recall

0.15 50.98% 89.61%
0.20 61.54% 84.13%
0.25 70.00% 77.15%

Despite the graph variability in handwritten words, our proposed indexation dis-
card more than half of TN without a significant decrease in the TP. Hence, is
could be used as a pre-processing step for speeding-up graph-based word spotting
techniques without decreasing the performance.

Table 4.8 shows the word spotting performance in terms ofmean Average Precision
and the percentage of required comparisons. The performance has decreased 4 and
7 points with x = 0.15 and x = 0.20 respectively regarding the word spotting that
performs all comparisons. In this retrieval scenario, it is usually required to detect
the top K similar images, hence having a small drop in our performance is not a
big issue. However, we have avoided more than half of the comparisons. Hence,
it is a good technique for time saving. Indeed, the computation time is reduced

55



4. INFORMATION SPOTTING BY GRAPH INDEXING

Table 4.8: Performance comparison of word spotting on the BH2M database.

Method mAP Comparisons

Original [177] 67.57% 100%
+Indexation x = 0.15 63.27% 49.19%
+Indexation x = 0.20 60.19% 38.65%

using our indexation approach. Taking 100 random queries and comparing each
query against all the words in the 40 pages of test, it takes 1841.47 seconds. The
comparison between word graphs is performed with a C implementation of the
assignment edit distance proposed in [181]. The indexation process (implemented
in Matlab without being optimized) for the same queries and pages, takes only
325.47 seconds to find the candidates to match and it computes only 52.05% of
comparisons. Hence the time for comparisons is reduced to 1,149.36 seconds.

4.4 Conclusions

In this chapter, we have presented an approach for computing a fast indexation to
speed-up the inexact subgraph matching process for large scale retrieval purposes.
The main contribution of the proposed approach is the definition of a binary
embedding for graph nodes based on the local context. The local context of a
node v ∈ V has been defined as the topology of the paths of order k incident in
the node v and coming from nodes of a given label. Then, a hashing architecture
has been designed using binary codes as indexation keys in terms of Hamming
distance.

Several experiments show the performance of the binary embedding in real sce-
narios involving complex graphs. First, a validation using a well-known database
of small graphs has been done. We could obtain a relevant decrease of compar-
isons needed for next steps, showing a big potential to quickly discard non-relevant
elements (i.e. detect true negatives). Second, the application to information spot-
ting such as symbol detection in floor plans showed encouraging results, although
specific techniques for dealing with symmetric touching symbols should be inves-
tigated. Finally, it has been applied to word spotting in historical handwritten
documents. In terms of a retrieval problem, high recall values are obtained, with a
specificity higher than 50% in most cases. High recall values allow to identify rel-
evant items whereas the specificity shows that the non-relevant ones are correctly
identified. In cases where there are more non-relevant than relevant items, it dis-
cards more than 50% of false positives without missing many relevant items. So, it
could be applied as a pre-processing step before using a more accurate technique
such as graph edit distance.

The time complexity of the indexation step is linear in terms of the number of

56



4.4. Conclusions

nodes in the database. It leads us to conclude that our graph indexation scheme
is very useful to compute inexact subgraph matchings in large-scale scenarios as
a filtering step for pruning the database, before using a more accurate matching
method only in the retrieved subgraphs. Finally, in terms of the application, we
have demonstrated that compact structural descriptors are useful signatures for
handwriting recognition, despite the variability of handwriting.

The main limitation of this approach comes from the noise that spurious nodes
may generate. Even though it should be mitigated with the binarization scheme,
this is not true if the noise present in the data is important. A possible solution to
deal with distortioned graphs is to find an abstract representation which removes
these problematic distortions.

57





5 | Hierarchical Representation for Robust
Matching

The only way of discovering the limits of
the possible is to venture a little way past
them into the impossible.

– Arthur C. Clarke

With the aim to cope with both the time complexity and the variability, defor-
mations and noise present in the generated graphs, in this chapter we propose
to construct a novel hierarchical graph representation. The previous chapter ex-
ploits the local node neighborhood leading to local binary embeddings which are not
able to capture the global connectivity of the graph. Graph clustering techniques
adapted from social media analysis have been used in order to iteratively contract
a graph at different abstraction levels while keeping information about its topol-
ogy. Abstract nodes attributes summarize information about the contracted graph
partition. For the proposed representations, a coarse-to-fine matching technique is
defined. Hence, small graphs are used as a filtering before more accurate matching
methods are applied. This approach has been validated in real scenarios such as
image classification or retrieval of handwritten words, i.e. word spotting.

5.1 Introduction

As reported in previous chapters, graph-based representations leads to high compu-
tational complexities usually dealt by graph embeddings, approximated matching
techniques or graph indexing approaches. However, despite their representational
power, graphs representations are very sensitive to noise and small variations.
Moreover, as it has been seen in the previous chapter, the proposed indexing
framework takes local node embeddings which are not able to capture the global
graph structure.

Despite the efforts trying to reduce the time complexity of the matching frame-
works, they are only suitable for quite small and restricted scenarios, in the number
of instances and size of the graphs. For instance, the previous chapter indexation
strategies have been proposed to prune the number of graph comparisons per-
formed by these techniques, however, indexation methods rely on local structures
rather than global knowledge of the graph. Therefore, it results in the retrieval of

59



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

many false positive responses due to the lack of a global similarity measure. An in-
teresting strategy to address this drawback is to use a graph scale-space approach
where the input data is hierarchically organized, summarizing it in order to prune
complex graph comparisons. Hence, while fine grained scales describe the detailed
structures, coarse scales describe the global ones.

Processing information using a multi-scale representation is successfully employed
in computer vision and image processing algorithms, which is mostly inspired by
its resemblance with human visual perception [1]. It is observed that a natu-
ralistic visual interpretation always demands a data structure able to represent
scattered local information as well as summarized global facts [113]. Hierarchi-
cal representation is often used as a paradigm to efficiently extract the global
information from the local features. Apart from that, hierarchical models are
also believed to provide time and space efficient solutions [215]. Motivated by
the above mentioned intuition and the existing works in the related fields, many
authors have come up with different hierarchical graph structures for solving var-
ious problems [73, 74, 151, 215]. In this sense, it is worth to mention the work of
Mousavi et al. [158], who presented a hierarchical framework for graph embedding,
although they did not explore the complex encoding of the hierarchy itself.

The main contribution of this chapter is the proposal of a hierarchical graph rep-
resentation and its associated matching technique able to discard non-promising
structures in a coarse-to-fine fashion. Following the scale-space principle, sub-
graphs sharing some properties at level i are contracted in a single node at level
i + 1. Thus the structural information for each level, characterized by the graph
topology and the corresponding attributes, flows through the hierarchical edges
to the contracted node. Our hierarchical information avoids a direct and costly
matching at the original graph level, performing first the comparisons at abstract
levels of the hierarchy, speeding up the process. The hierarchy is designed to
perform a big reduction of the graph size leading to a drastic reduction of the
matching time at the new levels. The proposed approaches are experimentally
validated using real scenarios such as classification of color images and handwrit-
ten word spotting. As far as we know, this is the first time where hierarchical
representations have been used as a pruning mechanism for efficient large-scale
graph retrieval.

To sum up, let us place our work into the current literature. First, graph matching
has not taken into account the hierarchical graph information in order to speed-up
the matching of two graphs. Second, several indexation frameworks have been
proposed, however, they cope with local graph information instead of obtaining
global representations. Third, the existing hierarchical graph representations usu-
ally propose a change of the graph scale rather than obtaining a real abstraction.
Finally, the proposed approach is learning free, therefore, our method does not
require any training data. In the next sections we will describe our proposed
methodology, which tries to solve the above mentioned limitations.

The rest of the chapter is organized as follows. Section 5.2 formalizes a hier-

60



5.2. Hierarchical Attributed Graph Representation

archical graph representation that is used in the rest of the work. Afterwards,
Section 5.3 proposes a coarse-to-fine matching technique able to deal with the pre-
vious representation. Section 5.4 is devoted to evaluate the proposed techniques
and to illustrate the performance in a real scenario. Finally, Section 5.5 draws the
conclusions and outlines the limitations of the current approach.

5.2 Hierarchical Attributed Graph Representation

An attributed hierarchical graph model with the ability of summarizing the rele-
vant features in a compact way is able to increase the information present in the
original graph including scale and abstract features. For the sake of simplicity,
let us firstly reformulate the definition of hierarchical graph introduced in Defini-
tion 2.5.1. With abuse of notation,

Definition 5.2.1 (Hierarchical Graph). A hierarchical graph h is defined as a
6-tuple h = (V,En, Eh, µ, νn, νh) where V is the set of nodes; En ⊆ V × V are the
neighborhood edges; Eh ⊆ V ×V are the hierarchical edges; µ, νn and νh are three
labeling functions defined as µ : V → LV , νn : En → LEn

and νH : Eh → LEh
,

where LV , LEn
and LEh

are three sets of attributes or labels for vertices and
edges, respectively.

5.2.1 Hierarchical Construction

A hierarchical graph representing information at different abstraction and scale
levels allows to perform a huge variety of tasks taking into account such infor-
mation. In particular, abstract levels encode a high level information that allows
to perform a coarser version of the task. Note that for each level, the graph is
reduced in terms of the number of nodes and edges, therefore, time complexity on
those graphs is drastically reduced.

The hierarchical graph construction consists of three stages. First, to find groups
of nodes representing graphlets which encode highly related information, namely
graph clustering; second, to create a new node which encodes the graphlet in-
formation and its hierarchical edges defining the relation between abstract levels;
and finally, to create neighborhood edges between the new nodes according to the
connections in the previous level. Therefore, given a graph g = (V,E, µ, ν) we
define two functions to construct their corresponding hierarchical representation
h = (V ′, E′n, E

′
h, µ
′, ν′n, ν

′
h).

• Embedding: The embedding function is a signature of the subgraph that
summarizes the information from one level to another. Let ϕ : G → Rn
be the embedding function, it returns a vectorial representation of a given
graph. The embedding ϕ enables the information propagation between lev-
els, from the original graph to its abstract representations. This function

61



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

codifies both, topological connections and node attributes. The embedding
function is application dependent and it is specified for each particular case in
Section 5.4. Note that the subgraphs that will be contracted will be small in
terms of the number of nodes. As shown by Dutta et al. [66] small subgraphs
are accurately represented by really simple embedding functions. However,
there is no restriction in which embedding function should be used [38].

• Contraction: The graph contraction function drives the hierarchical graph
generation. Let cϕ : G → H, where H is the space of hierarchical graphs, be
the contraction function. It defines a hierarchical graph given a graph g and
a fixed embedding function ϕ. This function finds groups of nodes that are
gathered together into one node in the next level. The contraction process
can follow different criteria such as topology, features of the nodes or edges,
etc. In this work, we propose to use a classic graph clustering technique that
has been widely used for community detection. However, other techniques
may be used depending on other needs.

Algorithm 5.1 proposes a general pipeline to construct a hierarchical or pyramidal
graph given an input graph g. In this algorithm, L is the number of hierarchical
levels of the output graph h and ε and δ are the contraction and connection ratio
respectively. Moreover, the ConsiderAsVertex and ClusterGraph functions
are the embedding and clustering functions previously introduced, which are ap-
plication dependent.

Algorithm 5.1 Hierarchical Graph Construction given an input graph g

Input: g = (V,E), L, ε, δ
Output: h = (V,En, Eh)
1: h← g; gc ← g
2: for i = 0 to L do
3: K = bε · |gc.V |c
4: {c0, . . . , cK−1} ← ClusterGraph(gc,K)
5: gn.V = {ConsiderAsVertex(cj) : j = {0, . . . ,K − 1}}
6: for (u, v) ∈ gn.V × gn.V do
7: if ConnectionRatio(u, v) > δ then
8: gn.E ← gn.E ∪ (u, v)
9: end if

10: end for
11: for j = 0 to K − 1 do
12: Eh ← Eh ∪ {(u,w) ∈ gc.V × gn.V : ∀u ∈ cj and w = gn.Vj}
13: end for
14: gc ← gn
15: h← IncludeToHierarchy(h, gc, Eh)
16: end for

Given a graph g and a clustering C = {c0, . . . , cK−1}, each cluster is summarized

62



5.2. Hierarchical Attributed Graph Representation

into a new node with a representative label (see line 5). Let us consider that this
label is defined as the result of an embedding function applied to the subgraph
defined by the clustered nodes and their edges. Moreover, edges between the new
nodes are created depending on a connection ratio between clusters. That means
that an edge is only created if there are enough connections between the set of
nodes defined by both clusters (see line 7). Finally, hierarchical edges are created
connecting the new node vci with all the nodes belonging to the summarized
cluster ci (see line 12). The proposed hierarchical construction is similar to the
one proposed by Mousavi et al. [158] but including explicitly the summarization
generated by the clustering algorithm by means of the hierarchical edges. Thus, the
proposed hierarchical construction obtains a representation which encodes abstract
information by means of the clusters while keeping the relation with the original
graph.

The following sections are devoted to explain in detail the used contraction function
and a proposed improvement dealing with particular cases on our graph represen-
tation.

5.2.2 Graph Clustering

Graph clustering has been widely used in several fields such as social and biolog-
ical networks [96], recommendation systems [91, 136] etc. It is roughly described
as the task of grouping graph nodes into clusters depending on the graph struc-
ture. Ideally, the grouping should be performed in such a way that intra-cluster
nodes are densely connected whereas the connections among inter-cluster nodes are
sparse. For example, Girvan and Newman [96] proposed a graph clustering algo-
rithm to detect a community structures for studying social and biological networks.
Li et al. [91, 128, 136, 137] have proposed several graph clustering techniques for
recommendation systems based on different strategies: context awareness [91], in-
clusion of frequency property [136], distributed clustering confidence [128], etc.
Here we do not further review on graph clustering algorithms since it is not within
the main scope of this dissertation. However, it is worth remarking that one of
the most important aspects of graph clustering is the evaluation of cluster qual-
ity, which is crucial not only to measure the effectiveness of clustering algorithms,
but also to give insights on the dynamics of relationships in a given graph. For a
detailed overview on effective graph clustering metrics, the interested readers are
referred to [7].

Even though any graph clustering algorithm can be used, we selected a standard
divisive-based algorithm named Girvan-Newman [96]. It provides structurally
meaningful clusters of a given graph. In addition, the Girvan-Newman algorithm
is an intuitive and well-known algorithm used for community detection in complex
systems. It is a global divisive algorithm which removes the appropriate edge
iteratively until all the edges are deleted. At each iteration, new clusters emerge by
means of connected components. The idea is that the edges with higher centrality

63



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

are the candidates to be connecting two clusters. Therefore, betweenness centrality
measure of the edges [86] is used to decide which edge is being removed.

Definition 5.2.2 (Betweenness Centrality). Given a graph g = (V,E, µ, ν), the
betweenness centrality of a node v ∈ V is defined as the sum of the fraction of
all-pairs shortest paths that pass through v. Formally,

g(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
,

where σ(s, t) is the number of shortest paths between s and t; and σ(s, t|v) is the
number of those paths passing through v. If s = t, σ(s, t) = 1, and if v = s or
v = t, σ(s, t|v) = 0.

Similarly, the betweenness centrality of e ∈ E is defined as the ratio of shortest
walks between any pair of nodes that cross e. The idea is that the edges with
higher centrality are candidates to connect two distinct clusters. This algorithm
follows the hard assignment paradigm, therefore, there are no overlapping clusters.
This algorithm consists of 4 steps:

1. Calculate the betweenness centrality for all edges in the network.

2. Remove the edge with highest betweenness and generate a cluster for each
connected component.

3. Recalculate the betweenness centrality for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

The output of this algorithm is a dendrogram providing a hierarchical clustering
of the graph nodes. In case of ties, i.e. several edges have the same betweenness
centrality, the edge with more connections in their compounding nodes is deleted.

In this chapter, instead of fixing the number of nodes at each level (see line 3), we
propose to contract clusters containing at least two nodes on the final dendrogram,
i.e. only disconnected nodes will remain the same at different levels. This means
that all the clusters will contain at least two nodes. Therefore, the reduction
ratio is at least of 2. The nodes belonging to a cluster, are contracted into a new
vertex which is labeled with the embedding function ϕ applied to the corresponding
subgraph. Finally, connected communities will create connected nodes. Therefore,
following the notation introduced in the Algorithm 5.1, δ is set to 0 and the
contraction ratio is dynamically set.

Regarding the embedding function, it is computed on the subgraphs defined by
the clusters or communities. Therefore, once the graph communities have been
detected, a connected subgraph is defined for each cluster. In the new abstract
level, each cluster is represented by a new node with its corresponding graph
embedding.

64



5.2. Hierarchical Attributed Graph Representation

5.2.3 Splitting of Articulation Points

Although overlapping community detection techniques have been developed [166],
they generate redundant information leading to a bad abstraction. Moreover, they
increase the problem complexity. In the present work, we did not face this prob-
lem, however, there are cases where slight deformations in the input graphs lead
to completely different hierarchies. Symmetries in the original graph is a configu-
ration that easily lead to bad contractions. In particular, in real cases, we find a
particular configuration that produces ambiguous contraction, see Figure 5.1. In
this particular case, the symmetry is produced by articulation points which are
defined as follows,

Definition 5.2.3 (Articulation point). A node in an undirected graph is an ar-
ticulation point if and only if in case of removing it, the number of connected
components of the graph increases.

Even tough articulation points are not the only source of problems, analyzing real
graphs coming from handwritten images, which is our application domain, has
shown that they heavily affect performance.

Figure 5.1: Ambiguity configuration that significantly influence in the hierarchy
construction, in red two possible clustering of nodes from the contraction function.
A slight change in one of the nodes will change completely their abstraction.

These nodes are of key importance, if they are classified in an incorrect cluster,
they change drastically the topology in the following levels. Thus, we propose to
split the articulation points of the graphs creating virtual nodes and disconnecting
them. Hence, the hierarchical representation is stabilized without introducing
noise to the data. In other words, the articulation points are divided. Therefore,
these nodes will belong to two or more clusters. Introducing this modification to
the contraction function, a more stable hierarchy is generated. Figure 5.2 shows
the splitting process in a real scenario where graphs represent skeleton features

65



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

(a) (b) (c)

Figure 5.2: Example of hierarchy construction for a real graph, in blue the
corresponding graph and in red the vertices that are contracted, (a) input graph,
(b) hierarchy for the Girvan-Newman based contraction function, (c) hierarchy for
the Girvan-Newman based contraction function splitting the articulation points.

in handwritten word images. Note that splitting the articulation point leads to a
robust representation of the word “rebere”.

5.3 Error Tolerant Hierarchical Matching

Given the hierarchical graph-based representations proposed in the last section,
we now formalize a matching scheme able to exploit its hierarchical structure to
speed-up the matching process. Let g1, g2 ∈ G be two graphs, whose hierarchical
graph representation of L abstract levels is defined by h1 = cϕ(g1) and h2 = cϕ(g2).

In order to take advantage of the hierarchical graph representation, we propose a
coarse-to-fine graph matching approach. The developed framework is independent
of the matching methodology, therefore, it can be easily changed. In this work, we
have used the assignment edit distance (AED) algorithm proposed by Riesen and
Bunke in [181]. It is a graph edit distance approximation that has been previously
introduced at Chapter 2, therefore, it computes a distance between two given
graphs through a set of edit operations.

The same edit costs as the ones presented in Chapter 3 have been used, the node
substitution cost is a weighted sum based in the distance between node positions,
their attributes and the local structure of incident edges; the edge substitution cost
is computed in terms of the edge attribute, angle and length; finally, predefined
costs are used for the node and edge insertion and deletion. Thus, there are 8
parameters to tune, 3 for node substitution, 3 for edge substitution and 2 for
insertion and deletion.

Let us denote Hi the graph representation at level i = 0, . . . , L, where i = L is the
coarsest level, i.e. the level with less number of nodes, and i = 0 corresponds to
the original graph. The proposed approach iteratively refines the matching com-
putation starting at the coarsest level. The comparison is performed using the
before mentioned AED as a graph matching technique taking the graph represen-
tation at level i ignoring the hierarchical edges. Starting from the smaller graphs,

66



5.4. Experimental Validation

if the distance between level i representations is small enough, the matching is
performed at the next level i− 1. The threshold to decide whether to advance in
the hierarchy or not is application dependent and it is experimentally set using a
validation set. Starting the matching at the abstract level avoids a high number
of comparisons at more detailed levels where the graphs are significantly bigger.
Ideally, the last level is only used for graphs that are very similar to the input one.
The information about the matching level is kept to obtain a rough similarity
measure.

Figure 5.3 shows the iterative process to decide whether the graphs match or we
can discard the following comparisons in any of the deeper levels of the hierarchy.

Figure 5.3: Coarse-to-fine graph matching scheme. Each of the hierarchies have
three abstract levels and a comparison is performed between these levels indepen-
dently. This approach may stop the matching comparisons at any of the graph
levels.

5.4 Experimental Validation

This section is devoted to validate the performance of the developed approach. To
illustrate it, we perform two different tasks. Three real databases have been used
to show the potential of the proposed framework. First, the Columbia Object Im-
age Library (COIL-100) [160] and the Object DataBank (ODBK) [212] have been
used to reproduce the experiments proposed by Mousavi et al. [158] in an object
classification scenario. Second, The Barcelona Historical Handwritten Marriages
Database (BH2M) [76] database has been used in a graph-based word spotting sce-
nario in handwritten documents where graphs are irregular and suffer from high
distortions. Thus, the experiments have been divided into two challenges: object
classification in the COIL-100 and ODBK datasets and word spotting in the BH2M
dataset. The thresholds used in this Section have been carefully selected using the
validation set.

67



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

5.4.1 Object Classification

The COIL-100 database consists of images of 100 different objects taken at 72
equally spaced poses whereas the ODBK database is formed by 209 3D objects
with 14 views. For both datasets, graph nodes are extracted using the Harris
corner detector and the edges are generated using the Delaunay triangulation on
these nodes. More details on these datasets are provided in the Appendix A.

Firstly, we have reproduced the experiments proposed in [158] using these two
datasets. The objective of this experiment is to classify color images into their
corresponding classes using their graph representation. The k-nearest neighbour
(k-NN) has been used as a classification framework. For this experiment, the
original graphs and the 1st and 2nd abstract levels are evaluated. The selected
embedding function ϕ encodes information of the node position and the Morgan
Index of length 1 and 2 of the previous level. Three approaches have been evaluated
on how the node information is combined,

• averaging the Morgan Index and node position from all nodes in the graphlet;

• averaging the Morgan Index and selecting the most connected node as the
position;

• taking the maximum Morgan Index and the most connected node position.

We only present the results of averaging the Morgan Index and node position from
all contracted nodes because other configurations lead to similar performance.
In this experiment, the Morgan Index information codifies the local topology or
connectivity of the subgraph.

Each level of the hierarchy has been validated alone and combined with the original
graph to explore the benefits of the proposed coarse-to-fine matching. All the
parameters for the distance computation have been chosen performing a random
search in the validation set. Since the graphs are generated using a triangulation
method, there are no articulation points, therefore, both contraction functions will
lead to the same hierarchical representation.

Table 5.1 shows the performance for both datasets, COIL-100 and ODBK respec-
tively. As far as we know, hierarchical graph representations have not been used
until now to prune comparisons and speed-up the matching process. The last 3
rows of the Table correspond to the performance reported by [158] using their
hierarchical representation with the same input graphs.

Note that the big loss of performance between the abstract levels is corrected
choosing a good trade-off between them. Our approach is able to prune more than
the 50% of comparisons at the finest level while achieving good results refining
the classification using the original graph. For instance, choosing a conservative
threshold, the time reduction is half, losing only 2% of accuracy for the COIL-
100 database and 1.5 times faster maintaining the same accuracy for the ODBK

68



5.4. Experimental Validation

T
ab

le
5.
1:

P
er
fo
rm

an
ce

fo
r
O
bj
ec
t
C
la
ss
ifi
ca
ti
on

fo
r
C
O
IL
-1
00

(l
ef
t)

an
d
O
D
B
K

(r
ig
ht
)
da

ta
se
ts
.
R
ow

s
ar
e
di
vi
de
d
in

5
bl
oc
ks
:
pe

rf
or
m
an

ce
fo
r
ea
ch

le
ve
l;
co
ar
se
-t
o-
fin

e
m
at
ch
in
g
us
in
g
th
e
1s
t,

2n
d
ab

st
ra
ct

le
ve
ls

an
d
th
e
co
m
bi
na

ti
on

of
th
em

;
th
e
fin

al
ro
w
-b
lo
ck

co
rr
es
po

nd
th
e
th
e
pe

rf
or
m
an

ce
re
po

rt
ed

by
M
ou

sa
vi

et
al
.
C
ol
um

ns
co
rr
es
po

nd
to

th
e
us
ed

th
re
sh
ol
d;

ac
cu
ra
cy

of
a
k-
N
N

cl
as
si
fie
r;

pe
rc
en
ta
ge

of
av
oi
de
d

co
m
pa

ri
so
ns

at
th
e
ba

se
le
ve
l;

ti
m
e
in

se
co
nd

s
to

pe
rf
or
m

al
l
th
e

co
m
pa

ri
so
ns
.

C
O
IL
-1
00

da
ta
ba

se

T
hr
es
h.

k
-N

N
(%

)
A
C

1
(%

)
t(
s)

1
3

5

O
ri
gi
na

l
-

10
0.
00

10
0.
00

98
.0
0

-
20

10
1s
t
ab

st
.

-
72
.6
7

74
.6
7

72
.6
7

-
16

7
2n

d
ab

st
.

-
38

.0
0

39
.3
3

44
.6
7

-
13

1s
t
ab

st
.

0.
19

82
98

.0
0

97
.3
3

93
.3
3

67
.3
7

97
7

0.
16

80
90

.0
0

89
.3
3

82
.6
7

95
.4
1

28
9

2n
d
ab

st
.

0.
21

53
10

0.
00

99
.3
3

96
.6
7

33
.6
8

14
44

0.
18

95
97

.3
3

94
.6
7

93
.3
3

58
.9
9

93
7

1s
t
ab

st
.

0.
19

82
98
.6
7

98
.0
0

92
.6
7

71
.6
3

89
3

2n
d
ab

st
.

0.
21

53

O
ri
gi
na

l
-

10
0.
00

97
.0
0

90
.0
0

M
ou

sa
vi

et
al
.[
15

8]
1s
t
ab

st
.

-
98
.1
7

94
.8
3

88
.8
3

2n
d
ab

st
.

-
87

.0
0

81
.6
7

78
.1
7

O
D
B
K

da
ta
ba

se

T
hr
es
h.

k
-N

N
(%

)
A
C

1
(%

)
t(
s)

1
3

5

O
ri
gi
na

l
-

79
.3
3

76
.0
0

74
.0
0

-
34

95
9

1s
t
ab

st
.

-
58

.6
7

58
.0
0

54
.6
7

-
19

54
2n

d
ab

st
.

-
42

.0
0

41
.3
3

46
.0
0

-
14

1

1s
t
ab

st
.

0.
23

96
79

.3
3

76
.0
0

74
.0
0

48
.1
8

22
50

1
0.
21

30
78

.6
7

75
.3
3

72
.0
0

79
.1
0

10
49

6

2n
d
ab

st
.

0.
29

73
78

.6
7

74
.6
7

72
.6
7

33
.7
6

26
11

1
0.
25

73
76

.6
7

71
.3
3

68
.6
7

68
.4
9

12
22

8

1s
t
ab

st
.

0.
21

30
78
.0
0

74
.0
0

70
.6
7

79
.2
3

10
29
2

2n
d
ab

st
.

0.
29

73

O
ri
gi
na

l
-

66
.6
7

65
.3
3

63
.3
3

M
ou

sa
vi

et
al
.[
15

8]
1s
t
ab

st
.

-
66

.6
7

62
.6
7

62
.0
0

2n
d
ab

st
.

-
60

.0
0

55
.3
3

53
.3
3

1
A
C

st
an

ds
fo
r
A
vo
id
ed

C
om

pa
ri
so
n

69



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

database. However, relaxing this threshold, we are able to achieve a speed-up of
7× with a loss of 10% in accuracy for the COIL-100 database and 3.3× faster
losing 1% in accuracy for ODBK. In a large scale scenario, this is an acceptable
loss to make an application much faster.

Compared to [158], our methodology does not achieve as good results when taking
into account the different abstraction levels alone. One of the main reasons is that
our hierarchy is dynamically constructed, not fixing the contraction ratio between
levels. Thus, we are generating smaller graphs and generating an abstract rep-
resentation rather than a change in scale. However, when performing the whole
proposed pipeline, our methodology outperforms their abstract levels with a sig-
nificant speed-up, 98% in the COIL-100 database and 78% in the ODBK database,
with a time reduction higher than 50%.

5.4.2 Word Spotting

Continuing with our running experiment on the BH2M database [76] we evaluate
our hierarchical representation and matching for the retrieval problem of word
spotting on historical documents

Figure 5.4 shows the interpretation of the hierarchical graph representation in the
context of this database. Observe how the graphemes are combined at each level
to create more complex shapes like letters, bi-grams and finally words.

Figure 5.4: Construction of the hierarchical graph representation for the word
“Dalmau”, convexities extracted from the word vectorization and how are combined
following the hierarchical edges (left) and grapheme graph at 5 resolution levels.

For this experiment, the embedding function ϕ consists of a vector that counts
the number of walk of length up to k from any node to a node with label i. The
best configuration has been k = 0, i.e. counting the number of nodes with label i,

70



5.4. Experimental Validation

which is similar to a bag of words for the nodes on the contracted subgraph. In this
experiment, the same parameters proposed in Chapter 3 for the original graphs
have been used in order to compute the edit cost operations. Table 5.2 shows
the performance at the original level alone or using the two proposed contraction
functions. Note that splitting the articulation points leads to a more robust repre-
sentation of the graph. This is caused by the sequential nature of the handwritten
strokes that leads our representation to generate lots of ambiguous situations.

Table 5.2: Comparison of the proposed hierarchical framework changing the
contraction function in the BH2M dataset. The original performance is compared
with and without splitting the articulation points.

mAP (%)

Original [177] 69.45
1st abstraction 35.67
+ split 46.37

Figure 5.5 shows qualitative results of the retrieved words at two levels. Note that
in the 1st abstract levels, we retrieve some incorrect words. However, in terms
of shape, these words are quite similar. In fact, most of them, such as “ferrer”,
“ferran” and “forner”, will fall in the same class in a coarse human classification in
terms of shape.

Table 5.3: Comparison of the proposed hierarchical framework against an index-
ation framework introduced in Chapter 4. The mean average precision corresponds
to the evaluation of the word spotting problem; recall (R) and specificity (SPC)
are computed on the selected graphs using the hierarchy or the indexation respec-
tively; finally, the time per query is provided.

mAP (%) R (%) SPC (%) Time/query2 (s)

Original [177] 69.45 100.00 0.00 19.58
+abst. (t=0.30) 68.27 90.91 69.98 12.46
+abst. (t=0.25) 61.71 67.93 97.91 3.94
+ [179] (t=0.20) 66.13 92.54 46.13 16.34
+ [179] (t=0.30) 61.15 83.55 63.04 12.74

A key element in our approach is to define a good threshold that will determine a
good trade-off between speed and performance. Figure 5.6 shows the evolution of
avoided comparisons at the original level and mAP changing this threshold.

Table 5.3 shows a comparison between the original graphs, the proposed framework
with two thresholds, and the graph indexation proposed in the previous chapter.
Recall (R) and specificity (SPC) are computed on the selected graphs using the first

21000 queries selected randomly against 13098 graphs

71



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

Query:

Original:

1st abstract:

Figure 5.5: Qualitative results for the query “ferrer” extracted from the BH2M
dataset. The second row shows the retrieval using the original graph (ordered by
rows). The last row shows the power of using only the first abstraction level.
The green words are the correctly retrieved whereas, the red ones are incorrectly
retrieved.

72



5.5. Conclusions

Figure 5.6: Avoided comparisons and mAP evolution changing the threshold to
decide whether or not use the second level of the hierarchy. The plot is generated
with the validation set to decide the thresholds to use.

abstract level as classifier. The thresholds have been set according to Figure 5.6.
Notice that the proposed hierarchical framework achieves high specificity whereas
keeping a better trade-off with the recall than the indexation approach. Moreover,
only losing 8% of mAP which is acceptable for a large scale retrieval we are able
to speed up the process almost 5 times.

5.5 Conclusions

This chapter has presented a construction of a hierarchical graph representation by
means of contraction and embedding functions. Contraction uses graph clustering
techniques to gather nodes and simplify the graph. Moreover, a modification of
the contraction function has been proposed to stabilize the hierarchy in certain
graphs. The proposed method is able to significantly reduce the graph size al-
lowing a fast graph comparison through a coarse-to-fine matching approach. This
methodology prunes the amount of comparisons in the fine level. The approach
has been exhaustively validated using several databases for large-scale graph re-
trieval. Compared to other related works, the proposed approach dynamically
gathers the nodes without predefining the number of clusters, therefore, the ratio
of reduction for each sample can change. Furthermore, the graph size is extremely
reduced from one level to another.

2Computed on 1000 randomly selected queries against 13098 graphs

73



5. HIERARCHICAL REPRESENTATION FOR ROBUST MATCHING

We conclude that hierarchical graph representations are a powerful tool in the
matching process. This representation gives information about the relation of a
group of nodes (those that are contracted) instead of the typical pair-wise relations.
Moreover, each level of the hierarchy can be enriched following other indexing
methodologies such as the one proposed in the previous chapter.

Even though hierarchical representations have a powerful representational power,
in the proposed approach, the hierarchical connections are not exploited. More-
over, the proposed coarse-to-fine matching, still relies on the GED which is rather
slow (cubic in terms of number of nodes for the AED [181] approximation). Fur-
thermore, the coarse-to-fine matching expects the different hierarchical levels to
be aligned. This means that the matching is only computed level by level instead
of finding the best correspondence.

74



6 | Hierarchical Stochastic Graphlet
Embedding

The most exciting phrase to hear in science,
the one that heralds the most discoveries,
is not “Eureka!” (I found it!) but “That’s
funny...”.

– Isaac Asimov

In this chapter, we consider the hierarchical structure of a graph as a way to mit-
igate the loss of structural information of graph embeddings. Following the previ-
ous chapter, the hierarchical structure is constructed by topologically clustering the
graph nodes, and considering each cluster as a node in the upper hierarchical level.
Once this hierarchical structure is constructed, we consider several configurations
to define the mapping into a vector space given a classical graph embedding, in
particular, we propose to make use of the stochastic graphlet embedding (SGE).
Broadly speaking, SGE produces a distribution of uniformly sampled low to high
order graphlets as a way to embed graphs into the vector space. In what follows,
the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the
SGE complements each other and includes important structural information with
varied contexts. Altogether, these two methodologies substantially cope with the
usual information loss involved in graph embedding techniques, obtaining a more
robust graph representation. This fact has been corroborated through a detailed ex-
perimental evaluation on various benchmark graph datasets, where we outperform
the state-of-the-art methods.

6.1 Introduction

As we have seen in previous chapters, graphs have been successfully applied to
a huge variety of tasks. However, due to their symbolic and relational nature,
graphs have always suffered from some limitations if we compare them with the
traditional statistical (vector-based) representations. Some trivial mathematical
operations do not have an equivalence in the graph domain. In the literature,
a possible way this problem has been addressed is by means of embedding func-
tions. As reviewed in Chapter 2, given a graph space G, an explicit embedding
function is defined as ϕ : G → Rn which maps a given graph to a vector repre-

75



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

sentation [35, 93, 147, 193, 201]. However, defining such embedding functions is
extremely challenging, when the constraints on time efficiency and preserving the
underlying structural information is concerned. The problem becomes even more
difficult with the growing size of graphs, as the structural complexity increases
the possibility of noise and distortion in structure, and raises risk of loosing in-
formation. As we have already introduced, hierarchical representations are often
used as a way to deal with noise and distortion [158, 215], which provides a stable
delineation for an underlying object. Hierarchical representations allow to incre-
mentally contract the graph, in a space-scale representation, so the salient features
(relevant subgraphs) remain in the hierarchy. Thus, top levels become a compact
and stable summarization.

Motivated by the successes of the hierarchical models and the efficiency of graph
embedding theory, we propose a general hierarchical graph embedding formulation
that first creates a hierarchical structure from a given graph, and then utilizes the
multi scale structure to explicitly embed a graph in a real vector space by means
of local graphlets. Similarly to the previous approach, firstly, we make use of
the graph clustering algorithm proposed in [96] to obtain a hierarchical graph
representation of a given input graph. Here, each cluster of nodes in a level i
is depicted as a single node in the upper hierarchical level i + 1, whereas the
edges in a level are connected depending on the original topology of the base
graph, and the hierarchical edges are created by joining a node representing a
cluster to all the nodes in the lower level. Mousavi et al. [158] proposed a similar
approach that is inspiring our model. Our encoding is richer because our hierarchy
not only contains different graph abstractions but also encodes useful hierarchical
contractions through the hierarchical edges.

Once the hierarchical structure of a graph is created, we propose a novel use of the
Stochastic Graphlet Embedding (SGE) [66] to exploit this hierarchical information.
On the one hand, we exploit the local configuration in form of graphlets thanks
to the SGE design, because graphlets provide information at different neighbor-
hood sizes. On the other hand, the hierarchical connections allow to encode more
abstract information and hence to deal with noise present in the data. As a re-
sult, the Hierarchical Stochastic Graphlet Embedding (HSGE) encodes a global
and compact representation of the graph that is embedded in a vector space. The
consideration of the entire graph hierarchy for the embedding instead of only the
base graph empowers the representation ability and handles the loss of informa-
tion that usually occurs in graph embedding methods. Moreover, the statistics
obtained from the uniformly sampled graphlets of increasing size model the com-
plex interactions among different object parts represented as graph nodes. Here,
the hierarchical graph structure and the statistics of increasing sized graphlets
fetch important structural information of varied contexts.

As a result, our approach produces robust representations that benefits from
the advantages of the two above mentioned strategies: we first take advantage
of the embedding ability for mapping symbolic relational representations to n-

76



6.2. Hierarchical Graph Embedding

dimensional spaces, so machine learning approaches can be used; and second, the
ability of hierarchical structures to reduce noise and distortion inherently involved
in graph representations of real data, keeping the more stable and relevant sub-
structures in a compact way.

In conclusion, the main contribution of the present chapter is the exploitation of
the hierarchical structure of a given graph, rather than only studying the base
graph for graph embedding purposes. Assessing the hierarchical information of a
graph pyramid allows to extend the representation power of the embedded graph
and tolerate the instability caused due to noise and distortion. Our proposal is
robust because, on the one hand, it organizes the structural information in the
hierarchical abstraction, and on the other hand, it considers the relation between
object parts and their complex interactions with the help of uniformly sampled
graphlets of unbounded size. Additionally, the proposed method is generic and can
adapt any other graph embedding algorithm in the framework. In this sense, we
extensively validated our proposed algorithm on many different benchmark graph
datasets coming from different application domains.

The rest of this chapter is organized as follows. The generic hierarchical graph
representation is presented in Section 6.2. Section 6.3 introduces the Stochas-
tic Graphlet Embedding as the base embedding we will use. Section 6.4 studies
the computational complexity of the whole embedding pipeline. Afterwards, Sec-
tion 6.5 reports the experimental validation and compares the proposed method
with available state-of-the-art algorithms. Finally, in Section 6.6 we draw the
conclusions and describe future directions of this work.

6.2 Hierarchical Graph Embedding

In the literature, only few embedding approaches exploit the idea of multi-scale
or abstraction information. This section is devoted to provide a framework able
to include this information given a graph embedding. Some works that have been
proposed to exploit the mentioned multi-scale information in the literature [65,
158, 178], discard the hierarchical information provided by the hierarchical edges
and focus on abstractions of the original graph. Other works, do not explicitly
create a hierarchical structure [126].

As introduced in the previous chapter, the proposed hierarchical representation
is constructed in terms of a graph clustering approach and a graph embedding
function in charge of summarizing the detected clusters.

6.2.1 Hierarchical Construction

Following the hierarchical construction introduced in Algorithm 5.1. The main
difference from the previous chapter is that in this case, the Girvan-Newman al-

77



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

(a) (b)

Figure 6.1: Overview of the hierarchical graph notation. (a) Hierarchical graph
construction is proposed in Algorithm 5.1. The input graph g is processed to
generate a hierarchical graph hg where each level hig encodes a new abstraction
of the original graph. Moreover, hierarchical edges provide the insights of the
performed contraction. In this figure, not all the hierarchical edges have been
drawn to make it easy to understand, and the node clustering is drawn in color.
(b) Following the hierarchical graph construction in (a), the graphs taken into
consideration in order to construct the hierarchical embedding are shown. ϕ(hig)

takes into account one abstraction level whereas ϕ(hi,i+1
g ) takes into consideration

two of these levels and the hierarchical edges involved.

gorithm is early stopped given the reduction ratio r ∈ R described in line 3.
Therefore, the number of clusters is forced to be br · |V |c.

Following the Definition 2.5.1, let us introduce some notations regarding the hier-
archical representation that will be used in the following sections. Given a graph
g and a number of levels L, hg denotes their corresponding hierarchical graph
computed from g with L levels. hlg, where l = {0, . . . , L} is a graph without hi-
erarchical edges corresponding to the l level of summarization, therefore, h0

g = g.
Moreover, hl1,l2g where li = {0, . . . , L} and l1 ≤ l2, corresponds to the hierarchi-
cal graph compressed between levels l1 and l2. Hence, hg = h0,L

g and hlg = hl,lg .
Finally, hl1g ∪hl2g corresponds to the union of two graphs without hierarchical edges.

Figure 6.1(a) shows the construction of the hierarchy given a graph g. Each level
shows an abstraction of the input graph where the nodes have been reduced.

6.2.2 Hierarchical Embedding

This section introduces a novel way to encode hierarchical information of a graph
into an embedding. Moreover, the proposed technique is generic in the sense that

78



6.2. Hierarchical Graph Embedding

it can be used by any graph embedding function.

Given a graph g which should be mapped into a vectorial space and an embedding
function ϕ : G → Rn, we first proceed to obtain a hierarchical representation hg
following the proposed methodology described in Section 6.2.1. Therefore, hg
has enriched the original graph with abstract information considering L levels.
Finally, we propose to make use of the hierarchical information to construct a
hierarchical embedding. The general form of the proposed embedding takes into
account graphs at multiple scales and hierarchical relations. Thus, the embedding
function does not only compactly encode the contextual information of nodes at
different abstraction levels, but also it encodes the hierarchy contraction. The
embedding function is defined as follows:

Φ(hg) =
[
ϕ(h0

g), . . . , ϕ(hKg ), φ1
1(hg), . . . , φ

k1
1 (hg), φ

1
2(hg), . . . , φ

k2
2 (hg)

]
(6.1)

where,
φk1(hg) =

[
ϕ(h0,k

g ), . . . , ϕ(hK−k,Kg )
]

(6.2)

φk2(hg) =
[
ϕ(h0

g ∪ · · · ∪ hkg), . . . , ϕ(hK−kg ∪ · · · ∪ hKg )
]

(6.3)

where K ≤ L are the considered hierarchical levels and k1, k2 ≤ K indicate the
number of levels taken into account at the same time. Note that when the setting
is K = L, k1 = K and k2 = K, the whole hierarchy and possible combinations is
taken into account. From this general representation of the proposed embedding,
we have evaluated some particular cases.

Baseline embedding: This embedding is the one used as a baseline. In this
scenario K = 0, k1 = 0 and k2 = 0, therefore Φ(hg) = ϕ(h0

g). No abstract
information is taken into consideration, hence, the embedding Φ is defined as:

Φ(hg) = ϕ(g). (6.4)

Pyramidal embedding: This embedding has been previously proposed in the
literature [65, 158]. It combines information of the abstract levels of the graph
i.e. hig not taking into account hierarchical information. Therefore, the hierarchi-
cal edges are discarded and no relation between levels is considered, K ≥ 1, k1 = 0
and k2 = 0. We define the embedding Φ as follows:

Φ(hg) =
[
ϕ(h0

g), . . . , ϕ(hKg )
]
. (6.5)

Note that each element corresponds to independent levels of the hierarchy without
hierarchical edges.

Generalized pyramidal embedding: Following the previous idea, the informa-
tion of the abstract levels of the graph i.e. hig is combined. Now, hierarchical
information is taken into account by embedding unions of levels i.e. hi1g ∪ hi2g but

79



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

discarding hierarchical edges (no clustering information is taken into account). In
this scenario K ≥ 1, k1 = 0 and k2 ≥ 1, therefore, we define the embedding Φ as:

Φ(hg) =
[
ϕ(h0

g), . . . , ϕ(hKg ),

ϕ(h0
g ∪ h1

g), . . . , ϕ(hK−1
g ∪ hKg ), . . . ,

ϕ(h0
g ∪ · · · ∪ hk2g ), . . . , ϕ(hK−k2g ∪ · · · ∪ hKg )

] (6.6)

Hierarchical embedding: This embedding is computed mixing different levels
considering them as a single graph with two types of edges, namely hierarchical
and intra-level, K ≥ 1, k1 ≥ 1 and k2 = 0. The idea is to create an embedding able
to codify both, graph and clustering information. Depending on the embedding,
hierarchical edges can make use of special label to treat them differently. The
hierarchical embedding is defined as:

Φ(hg) =
[
ϕ(h0

g), . . . , ϕ(hKg ),

ϕ(h0,1
g ), . . . , ϕ(hK−1,K

g ), . . . ,

ϕ(h0,k1
g ), . . . , ϕ(hK−k1,Kg )

] (6.7)

Note that each element corresponds to the subhierarchy compressed between the
specified levels.

Exhaustive embedding: Finally, in order to take into consideration the whole
hierarchy, we make use of the whole embedding Φ as defined in Equation 6.1 where
K ≥ 1, k1, k2 ≥ 1.

Figure 6.1(b) shows the graphs taken into consideration when the hierarchical
embeddings are computed.

6.3 Stochastic Graphlet Embedding

As defined in Definition 2.4.1, a graph embedding is a function ϕ : G → Rn that
explicitly embeds a graph g ∈ G to a high dimensional vector space Rn. In
this section, we introduce the Stochastic Graphlet Embedding (SGE) proposed
by Dutta et al. [66]. The entire procedure of SGE is described in two stages
(see Figure 6.2), where in the first step, the method samples graphlets from g in
a stochastic manner and in the second step, it counts the frequency of each iso-
morphic graphlet from the extracted ones in an approximated but near accurate
manner. The entire procedure fetches a precise distribution of connected graphlets
with increasing number of edges in g with a controlled complexity, which fetches
the relation among information represented as nodes and their complex interac-
tion.

80



6.3. Stochastic Graphlet Embedding

.

.

.

...

Stochastically sampled T 
graphlets in each run

1st run

2nd run

Mth run

Stochastic Graphlet Embedding

...

Hash 
Functions

 Sets of 
Isomorphic 
Graphlets

Figure 6.2: Overview of stochastic graphlet embedding (SGE). Given a graph g,
the stochastic parsing algorithm is able to uniformly sample graphlets of increasing
size. Controlled by two parameters M (number of graphlets to be sampled) and T
(maximum size of graphlets in terms of number of edges), the method extracts in
total M × T graphlets. These graphlets are encoded and partitioned into isomor-
phic graphlets using the set of hash functions with a low probability of collision. A
distribution of different graphlets is obtained by counting the number of graphlets
in each of these partitions. This procedure results in a vector space representation
of the graph g referred to as stochastic graphlet embedding.

6.3.1 Stochastic Graphlets Sampling

Considering a graph g = (V,E, µ, ν), the goal of the graphlet extraction procedure
is to obtain statistics of stochastic graphlets with increasing number of edges in g.
The way of extracting graphlets is stochastic and it uniformly samples graphlets
with boundlessly increasing number of edges without constraining their topology
or structural properties such as maximum degree, maximum number of nodes,
etc. Our graphlet sampling procedure, outlined in Algorithm 6.1, is iterative and
the number of runs is controlled by a parameter M that indicates the number of
distinct graphlets to be sampled (see line 2 of Algorithm 6.1). Also, each of theseM
processes are regulated by another parameter T that denotes the maximum number
of iterations a single process should have (see line 5). Since each of these iterations
adds an edge to the presently constructing graphlet, T indirectly specifies the
maximum number of distinct edges each graphlet should contain. Considering Ut
and At respectively as the aggregated sets of visited nodes and edges till iteration
t, they are initialized at the beginning of each step as A0 = ∅ and U0 = {u}
with a randomly selected node u which is uniformly sampled from V (see line 4).
Thereafter, at t-th iteration (with t ≥ 1), the sampling procedure randomly selects
an edge (u, v) ∈ E\At−1 that is connected from any node u ∈ Ut−1 (see line 7).
Accordingly, the process updates Ut ← Ut−1 ∪ {v} and At ← At−1 ∪ {(u, v)} (see

81



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

line 8). All these processes within a step are repeated T times to sample a graphlet
with maximum T edges. M is set to relatively large values in order to make the
graphlet generation statistically meaningful. Theoretically, the values of M are
guided by the theorem of sample complexity [229], which is widely studied and
used in the bioinformatics domain [170, 203]. However, the discussion and proof of
that is out of scope of the current dissertation. Intuitively, the graphlet sampling
procedure explained in this section follows a random walk process with restart
that efficiently parses g and extracts the desired number of connected graphlets
with an increasing number of edges. This algorithm allows to sample connected
graphlets from a given graph but avoids expensive way of extracting them in an
exact manner. Here the hypothesis is that if a sufficient number of graphlets are
sampled, then the empirical distribution will be close to the actual distribution of
graphlets in the graph. Furthermore, it is important to note that from the above
process, one can extract, in total, M × T graphlets each with number of edges
varying from 1 to T .

Algorithm 6.1 Stochastic-Graphlet-Parsing which obtains a set of graphlets S
by traversing g.

Input: g = (V,E), M , T
Output: S
1: S ← ∅
2: for i = 1 to M do
3: u← SelectRandomNode(V )
4: U0 ← u, A0 ← ∅
5: for t = 1 to T do
6: u← SelectRandomNode(Ut−1 )
7: v ← SelectRandomNode(V ) : (u, v) ∈ E \At−1
8: Ut ← Ut−1 ∪ {v} , At ← At−1 ∪ {(u, v)}
9: S ← S ∪ {(Ut, At)}

10: end for
11: end for

6.3.2 Hashed graphlets distribution

For obtaining a distribution of the extracted graphlets from g, it is needed to
identify sets of isomorphic graphlets from the sampled ones and then count car-
dinality of each isomorphic set. A trivial way of doing that certainly involves
checking the graph isomorphism for all possible pairs of graphlets for detecting pos-
sible partitions that might exist among them. Nevertheless, graph isomorphism
is a GI-complete problem [154] for general graphs, so the previously mentioned
scheme is extremely costly as the method samples huge number of graphlets with
many edges. An alternative, efficient and approximate way of partitioning isomor-
phic graphlets is graph hashing. A graph hash function is defined as a mapping

82



6.3. Stochastic Graphlet Embedding

H : G → Rm that maps a graph into a hash code (a sequence of real numbers)
based on the local as well as holistic topological characteristic of graphs. An ideal
graph hash function should map two isomorphic graphs to the same hash code as
well as two non-isomorphic graphs to two different hash codes. While it is easy to
design hash functions satisfying the condition that two isomorphic graphs should
have the same hash code, it is extremely difficult to find hash function that en-
sures different hash codes for every pair of non-isomorphic graphs. An alternative
is to design graph hash functions with low collision probability, i.e. mapping any
two non-isomorphic graphs to the same hash code with a very low probability.
For obtaining a distribution of graphlets, the main aim of graph hashing is to as-
sign extracted graphlets from g to corresponding subsets of isomorphic graphlets
(a.k.a. partition index or histogram bins) in order to count and quantify their dis-
tributions. The proposed mechanism for obtaining the distribution of uniformly
sampled graphlets, outlined in Algorithm 6.2, maintains a global hash table H,
whose single entry corresponds to a hash code of a graphlet gi produced by the
graph hash function. H grows incrementally as the algorithm confronts new graph
hash codes and maintains all the unique hash codes encountered by the system.
It is to be noted that the position of each unique hash code is kept fixed, because
each position corresponds to a partition index or histogram bin. Now to allocate
a given graphlet gi to its corresponding histogram bin, its hash code H(gi) is
mapped to the index of the hash table H, whose corresponding graph hash code
gives a hit with H(gi) (see line 8). If H(gi) does not exist in H at some instance,
it is considered as a new hash code (and hence gi as a new graphlet) encountered
by the system and appended H(gi) at the end of H (see line 6).

Algorithm 6.2 Hashed-Graphlets-Statistics which creates a histogram h of
graphlet distribution for a graph g.
Input: g, H
Output: h
1: S ← Stochastic-Graphlet-Parsing(g)
2: hi ← 0, i = 1, . . . , |S|
3: for all gi ∈ S do
4: H(gi)← HashFunction(gi)
5: if H(g) /∈ H then
6: H← H ∪ {H(gi)}
7: end if
8: i← GetIndex-In-HashTable(H(gi))
9: hi ← hi + 1

10: end for

Designing hash functions that yield identical indices for two isomorphic graphlets
is quite simple, whereas prototyping those providing two distinct hash codes for
two non-isomorphic graphs is very challenging. The chance of mapping two non-
isomorphic subgraphs to the same hash code is termed as collision probability.
Indicating H0 as the set of all pairs of non-isomorphic graphs, the probability of

83



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

collision is expressed as the following energy function:

E(f) = P ((g, g′) ∈ H0 | f(g) = f(g′)) (6.8)

So, in terms of collision probability, the hash functions that produce comparatively
lower E(f) values in Equation 6.8 are considered to be more reliable for checking
the graph isomorphism. It has been studied that sorted degree of nodes has 0
collision probability for all graphs with number of edges less or equal to 4 [66].
Moreover, it is also a well known fact that two graphs with the same betweenness
centrality (sorted) would indeed be isomorphic with high probability [48, 162]. For
example, sorted betweenness centrality has collision probabilities equal to 3.2e−4,
1.9e−4, 1.1e−4 respectively for graphlets with 7, 8 and 9 edges. Interested readers
are requested to see [66] for further discussions and analysis on various graph hash
functions and corresponding elaboration on probability of collision. Considering
the above facts, in this work, we consider sorted degree of nodes for graphlets with
t ≤ 4 and the betweenness centrality for graphlets with t ≥ 5.

Hash function =

{
sorted degree of nodes, if t ≤ 4

sorted betweenness centrality, otherwise
(6.9)

It should be observed that the distribution of sampled graphlets obtained by the
way mentioned until now, only considers the topological structure of a graph, and
ignores the node and edge attributes. However, it is worth mentioning that the
stochastic graphlet embedding permits to consider a small set of nodes and edge
attributes by creating respective signatures and then appending it to the hash code
encoding the topology of the graphlet. In this work, if needed, we first discretize
the existing continuous attributes using a combination of clustering algorithm such
as k-means and pooling technique. Later, the sorted discrete node and edge labels
are used as the attribute signatures and combined with the hash code.

6.3.3 Hierarchical Stochastic Graphlet Embedding

We propose to combine the properties of the proposed Stochastic Graphlet Embed-
ding with the Hierarchical Embedding introduced in the previous section.

On the one hand, SGE provides statistical information about local structures vary-
ing the number of edges involved. Therefore, it provides fine-grained insights of
the graph which cannot deal with too noisy data. The use of abstractions pro-
vided by the graph hierarchy increases the receptive field of each graphlet moving
to coarser information that is able to provide insights of the global graph infor-
mation. Moreover, the use of hierarchical edges during the computation allows
to combine information at some levels, i.e. combining different levels of detail
(see Equation 6.1). For now on, we will denote this embedding as Hierarchical
Stochastic Graphlet Embedding (HSGE).

84



6.4. Computational Complexity

6.4 Computational Complexity

This Section is devoted to study the computational complexity of the proposed
approach given a graph v = (V,E, µ, ν) where |V | = n and |E| = m.

6.4.1 Hierarchical Embedding Complexity

Graph clustering algorithms are usually high computational complexity techniques.
As it has been stated in Section 6.2.2, the Girvan-Newman algorithm has been
chosen as a graph clustering technique. The Girvan-Newman algorithm is based
on the betweenness centrality of the edges which has a time complexity of O(n ·m)
for unweighted graphs and O(n ·m+n ·(n+m) log(n)) for weighted graphs. Hence,
the Girvan-Newman algorithm, which has to remove all the edges, can be com-
puted in O(n ·m2) for unweighted graphs and O(n ·m2 + n ·m · (n + m) log(n))
for weighted graphs.

Assuming an embedding function ϕ which has a complexity of O(N) and assuming
that the hierarchical graph construction has a complexity of C1, then, if we assume
L levels, the proposed configurations would become a complexity O(C1 +L ·N) in
the case of the pyramid and O(C1 + L2 ·N) for the hierarchy and the exhaustive
embeddings.

6.4.2 Stochastic Graphlet Embedding Complexity

The computational complexity of Algorithm 6.1 isO(M ·T ) whereM is the number
of graphlets to be sampled and T is the maximum size of graphlets in terms of
the number of edges. Assuming a hash function with a complexity of O(C2),
Algorithm 6.2 has a time complexity of O(M ·T ·C2) for computing the stochastic
graphlet embedding. Here it is worth mentioning that “degree of nodes” and
“betweeness centrality”, respectively have the time complexity ofO(n) andO(n·m).
From the above explanation, it is clear that the complexity of these two algorithms
does not depend on the size of the input graph g, but only on the parameters M ,
T and the hash functions used.

6.5 Experimental Validation

This section presents the experimental results obtained by our proposed Hierar-
chical Stochastic Graphlet Embedding method. The main aim of this experimen-
tal study is to validate the proposed graph embedding technique for the graph
classification task, which demands robust embedding technique for mapping a
graph into a vector space. For experimentation, we have considered many dif-
ferent widely used graph datasets with varied characteristics. All these graphs

85



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

come from real data generated in the fields of Biology, Chemistry, Graphics and
Handwriting recognition. The MATLAB code of our experiment is available at
https://github.com/priba/hierarchicalSGE.

6.5.1 Experiments on Molecular Graph Datasets

The first set of experiments is conducted on various benchmarks of molecular
graphs. Several bioinformatics databases have been used, viz. MUTAG, PTC,
PROTEINS, NCI1, NCI109, D&D and MAO. These datasets have been widely
used as benchmark in the pattern recognition literature representing chemical com-
pounds for a binary classification problem. All the datasets are carefully described
in Appendix A.

Experimental setup

We have performed two different experiments: the first one does not use the at-
tribute information encoded in the nodes and edges of the graphs, whereas the
second experiment does use the available node and edge features. For evaluating
the performance of the proposed embedding technique, we have used a C-Support
Vector Machine (C-SVM) solver [41] as a classifier. Since the datasets consid-
ered in this set of experiments do not contain predefined train and test sets, we
have used a 10-fold cross validation scheme to obtain accuracies and have reported
the mean accuracies respectively in Table 6.1 and Table 6.2 for unlabeled and la-
beled datasets. We follow a classical graph classification pipeline where, in the
first stage, graph embedding is computed by our proposed scheme, whereas in the
second step, embedded graphs are classified using a previously trained classifier.

Results and discussion

In Table 6.1, we present the experimental results obtained by our proposed hierar-
chical embedding techniques together with other existing works on the unlabeled
datasets. The previously mentioned three configurations of our hierarchical em-
bedding are respectively denoted as: pyramidal, hierarchical and exhaustive. For
unlabeled datasets, we have considered 10 different state-of-the-art methods: (1)
random walk kernel (RW) [90], (2) shortest path kernel (SP) [23], (3) graphlet
kernel (GK) [203], (4) Weisfeiler-Lehman kernel (WL) [202], (5) deep graph ker-
nel (DGK) [238], (6) multiscale Laplacian graph kernel (MLK) [126], (7) diffu-
sion CNNs (DCNN) [11], (8) strong graph spectrums (SGS) [125], (9) family of
graph spectral distances (F_GSD) [219], and (10) stochastic graphlet embedding
(SGE) [66].

From the quantitative results shown in Table 6.1, it should be observed that for
most datasets, the highest accuracy is achieved by one of the hierarchical configu-
rations proposed by us, which sets a new state-of-the-art results on all the datasets
considered. Particularly, the best accuracies are obtained either by the pyramidal
or the exhaustive configurations, which indicates the importance of considering
hierarchical information for the graph embedding problem. As expected, the pro-

86

https://github.com/priba/hierarchicalSGE


6.5. Experimental Validation

posed hierarchical embeddings have achieved better performance than the SGE
which is regarded as the baseline of our proposal. It should be observed that with
this experimental setting, particularly the hierarchical configuration has performed
quite poorly compared to the other two configurations. This fact might suggest
that only hierarchical edges together with the connecting levels do not contain
sufficient information for a robust graph representation. Information captured in
the multi-scale graphs thought to play a vital role for graph embedding, which is
proved by the excellent performance obtained with the pyramidal and exhaustive
configurations.

Table 6.1: Classification accuracies on unlabeled molecular graph datasets. In
the table, RW corresponds to the random walk kernel [90], SP stands for the
shortest path kernel [23], GK denotes the graphlet kernel [203], WL indicates the
Weisfeiler-Lehman kernel [202], DGK corresponds to the deep graph kernel [238],
MLK stands for the multiscale Laplacian graph kernel [126], DCNN indicates the
diffusion CNNs [11], SGS denotes the strong graph spectrums [125], F_GSD stands
for the family of graph spectral distances [219], SGE corresponds to the stochastic
graphlet embedding [66], and HSGE indicates the hierarchical graph embeddings
proposed by us. The best results obtained on a dataset is indicated by bold face.

Methods MUTAG PTC PROTEINS NCI1 NCI109 D&D MAO

RW [90] 83.50 55.52 68.46 44.84 59.80 − 83.52
SP [23] 87.23 58.72 72.14 68.15 68.30 − 90.35
GK [203] 84.04 60.17 71.78 62.07 62.04 75.05 80.88
WL [202] 87.28 55.61 70.06 77.23 78.43 73.76 89.79
DGK [238] 86.17 59.88 71.69 64.40 67.14 72.75 87.76
MLK [126] 87.23 62.20 71.35 77.57 75.91 77.02 91.17
DCNN [11] 66.51 55.79 65.22 63.10 60.67 OMR 76.10
SGS [125] 88.61 − − 62.72 62.62 − −
F_GSD [219] 92.12 62.80 73.42 79.80 78.84 77.10 95.58
SGE [66] 91.11 63.53 71.89 83.23 82.92 74.92 95.71
HSGE (pyr.) 91.11 65.29 75.32 85.24 83.24 78.73 100.00
HSGE (gen. pyr.) 92.22 67.94 75.50 83.36 81.73 79.32 100.00
HSGE (hier.) 93.33 67.06 76.31 82.85 81.33 72.03 100.00
HSGE (exhaus.) 92.22 70.88 76.58 83.84 82.12 73.90 100.00

In Table 6.2, we demonstrate the results obtained by the different configurations
of our proposed hierarchical embedding applied to the labeled graph datasets.
For comparing with other state-of-the-art methods, we have considered two ad-
ditional techniques: (1) PATCHY-SAN (PSCN) [163] and (2) graphlet spectrum
(GS) [127]. Some of the previously considered state-of-the-art techniques do not
work with labeled graphs, so they have not been evaluated in this experimentation.

The results presented in Table 6.2 show that, except on the MUTAG dataset, our
proposed hierarchical embedding techniques have achieved the best performances
on all the other datasets. This demonstrates the usefulness of considering the
hierarchical information for embedding graphs to a vector space. Contrary to the
previous experiments on unlabeled datasets, in this case, the hierarchical configu-

87



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

ration has performed reasonably better. This fact shows that on labeled graphs,
the hierarchical edges together with the connecting levels might provide important
structural information. Also, it is important to note that the level information also
performed consistently on all the datasets.

Table 6.2: Classification accuracy on labeled molecular graph datasets. In the
table, MLK stands for the Multiscale Laplacian Graph kernel [126], DCNN in-
dicates the Diffusion CNNs [11], PSCN corresponds to the PATCHY-SAN [163],
GS denotes the Graphlet Spectrum (GS) [127], SGE corresponds to the Stochas-
tic Graphlet Embedding (SGE) [66], and HSGE indicates the hierarchical graph
embeddings proposed by us. The best results obtained on a dataset is specified by
bold face.

Methods MUTAG PTC PROTEINS NCI1 NCI109 D&D MAO

MLK [126] 87.94 63.26 − 81.75 − 78.18 88.29
DCNN [11] 66.98 56.60 − 62.61 − OMR 75.14
PSCN [163] 92.63 62.90 − 78.59 − 77.12 −
GS [127] 88.11 − − 65.00 − − −
SGE [66] 88.33 57.94 74.05 83.44 81.89 77.37 94.29
HSGE (pyr.) 91.11 62.06 75.68 84.79 82.03 77.46 94.29
HSGE (gen. pyr.) 92.78 65.59 76.58 81.31 80.24 79.66 97.14
HSGE (hier.) 91.11 67.35 75.77 82.50 82.88 79.32 94.29
HSGE (exhaust.) 91.67 66.18 76.04 84.42 84.42 80.25 97.14

6.5.2 Experiments on Pattern Recognition Datasets

While the datasets considered in the previous set of experiments were mostly
molecular in nature, the set of experiments to be discussed in this section consider
graphs from various fields, such as, biology, computer vision, graphics recogni-
tion and handwriting recognition. Underneath, we give a brief description of the
datasets considered followed by the experimental setup, results and discussions.

In this experiment, we consider four different datasets; three of them viz. AIDS,
GREC and COIL-DEL are taken from the IAM graph database repository1 [180].
The last one called HistoGraph dataset2 [207] consists of graphs representing words
from the communicating letters written by the first US president, George Wash-
ington. All the datasets are carefully discussed in Appendix A.

Experimental Setup

In this case as well, we have employed a C-SVM solver [41] as a classifier. Since
the datasets used in this set of experiments contain well defined train and test sets,
we have reported the obtained accuracy on the test set of the respective datasets
in Table 6.3.

1Available at http://www.fki.inf.unibe.ch/databases/iam-graph-database
2Available at http://www.histograph.ch

88

http://www.fki.inf.unibe.ch/databases/iam-graph-database
http://www.histograph.ch


6.5. Experimental Validation

Results and Discussion

Similar to the experimental results obtained in the previous section, in this set of
experiments our proposed hierarchical embeddings have achieved the best results
on most datasets as well. In this set of experiments, the leading scores are mostly
obtained by the exhaustive configuration, which shows the effectiveness of combin-
ing multi-scale structural information together with the hierarchical connections.
For some datasets, our hierarchical embedding does not achieve the best results,
but it has performed very competitively. This also proves the robustness of the
hierarchical graph representation.

Table 6.3: Results obtained on the AIDS, GREC, COIL-DEL and HistoGraph
datasets. In the table, RW corresponds to the Random Walk kernel [90], DE
stands for the dissimilarity embedding [35], NAS indicates the node attribute
statistics [93], AED denotes to the approximated graph edit distance [181], SGE
corresponds to the Stochastic Graphlet Embedding [66], and HSGE indicates our
hierarchical graph embeddings. The best results obtained on a dataset is indicated
by bold face.

Methods AIDS GREC COIL-DEL HistoGraph

Keypoint Grid-NNA Grid-MST Grid-DEL Projection Split

RW [90] 98.50 96.20 94.20 − − − − − −
DE [35] 98.10 95.10 96.80 − − − − − −
NAS [93] 98.30 99.20 98.10 − − − − − −
AED [181] − − − 77.62 65.03 74.13 62.94 81.82 80.42
SGE [66] 98.67 99.62 98.14 79.02 72.73 77.62 74.83 79.72 81.12
HSGE (pyr.) 98.87 99.43 98.79 79.02 72.73 77.62 74.83 79.72 81.12
HSGE (gen. pyr.) 98.35 99.43 98.37 77.62 72.03 77.62 74.13 79.72 81.45
HSGE (hier.) 98.33 99.05 98.99 79.02 70.63 76.22 75.52 80.42 80.42
HSGE (exhaust.) 99.00 99.43 98.86 79.72 72.03 78.32 74.83 81.82 81.82

6.5.3 Parameters Discussion

Our algorithm is mainly controlled by three different parameters: (1) the number
of levels L of the graph pyramid, (2) the reduction ratio R and (3) the maximum
number of edges T of a graphlet. For illustrating how these three parameters
control the performance of the system, first we plot the classification accuracy
by varying the levels of the graph pyramid (see Figure 6.3), reduction ratio (see
Figure 6.4) and T (see Figure 6.5). Here it is worth mentioning that for the sake of
simplicity, for each level we just consider the maximum accuracy obtained by any
configuration mentioned in Section 6.2.2. From Figure 6.3, we observe that for all
the datasets, considering a second level together with the base graph increases the
classification accuracy. However, the successive inclusion of hierarchical levels does
not always increase the performance. It has been observed that for smaller graphs
(with less number nodes and edges; e.g. the graphs from MUTAG), the further
inclusion of hierarchical abstraction decreases the performance of the system; this
means that for smaller graphs a higher level abstraction can introduce noise or

89



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

(a) (b)

(c) (d)

Figure 6.3: Plots showing classification accuracies by varying the levels of pyra-
midal graph construction on different datasets.

distortion. The reduction ratio R directly decides the number of clusters in a given
level, and hence the number of nodes in the next higher level of the hierarchy. For
example, R = 1 indicates that the number of clusters should remain the same with
the number of nodes, while R = 2 indicates that the number of clusters should
be half the number of nodes in that level. Figure 6.4 shows the behavior of our
method with different values of R while we have fixed L = 2. From these plots,
one must observe that R is completely dependent on the datasets irrespective
of the size of graphs they contain. For PTC, PROTEINS, and MAO datasets,
the performance mostly increases with the increase of R, while for MUTAG, it
improves until R = 2, and then it decreases for all hierarchical configurations. For
MAO dataset, all the hierarchical configurations behave exactly in the same way
with the increase of R, which might be because the smaller sized graphs on which
the contribution of different hierarchical configuration is indistinguishable.

In Figure 6.5, we show the performance trend on six datasets (i.e. MUTAG,

90



6.5. Experimental Validation

(a) (b)

(c) (d)

Figure 6.4: Plots showing classification accuracies by varying the reduction ratio
of pyramidal graph construction on different datasets.

PTC, PROTEINS, NCI1, and NCI109) only with the SGE algorithm, which is the
baseline graph embedding technique that we considered. The hierarchical config-
urations are not considered in this case because they have different graphlet size
in different hierarchical levels, so understanding their behavior would have been
complicated. From Figure 6.5, it is clear that increasing T mostly improves the
performance of the system on all the datasets. Albeit, there are some exceptions
(e.g. , for PTC dataset, T = 6), which suggests that graphlets with T edges are
less informative for that particular graph dataset.

6.5.4 Discussion on the Stochasticity of the Algorithm

It is important to note that our proposed algorithm is stochastic in nature because
of the involvement of the stochastic graphlet sampling and the subsequent graph
embedding procedure. The graphlet sampling engaged here uniformly samples

91



6. HIERARCHICAL STOCHASTIC GRAPHLET EMBEDDING

Figure 6.5: Plot showing the classification accuracy obtained by SGE by varying
the maximum number of edges from 3 to 7 on different datasets: MUTAG, PTC,
PROTEINS, MAO, NCI1, NCI109.

graphlets from a given population of graphs, and by the law of large numbers, this
sampling guarantees that the empirical distribution of graphlets is asymptotically
close to the actual distribution [170]. For demonstrating the fact that the stochas-
tic behavior of our algorithm does not heavily impact on the experimental results,
we repeated the last experiment on all the datasets considered for 10 iterations,
and in each iteration, we randomly seeded the sampling algorithm. The mean
and standard deviation of the classification accuracy obtained for each dataset is
reported in Table 6.4. The mean accuracies reported in the table are quite close
to the ones reported in Table 6.3, and the standard deviations are comparatively
low (all of them are less than 1.0). This suggests that the proposed graph embed-
ding technique, although employed a stochastic process, is consistent in terms of
performance.

Table 6.4: Mean and standard deviation of the accuracies obtained by repeating
the classification task on the AIDS, GREC, COIL-DEL and HistoGraph datasets
for 10 iterations. Here the mean accuracies consistent with the ones in Table 6.3
and the low standard deviations show that the proposed graph embedding is not
sensitive to the stochasticity involved in the algorithm. The best results obtained
on a dataset is specified by bold face.

Methods AIDS GREC COIL-DEL HistoGraph

Keypoint Grid-NNA Grid-MST Grid-DEL Projection Split

HSGE (pyr.) 98.74 99.36 98.74 78.98 72.71 77.57 74.79 79.72 81.04
(±0.13) (±0.19) (±0.21) (±0.32) (±0.10) (±0.43) (±0.62) (±0.99) (±0.84)

HSGE (gen. pyr.) 98.12 99.58 98.49 79.31 71.28 78.05 74.96 79.94 80.24
(±0.27) (±0.23) (±0.49) (±0.52) (±0.58) (±0.47) (±0.71) (±0.18) (±0.74)

HSGE (hier.) 98.24 99.04 98.98 79.03 70.51 76.20 75.47 80.39 80.38
(±0.36) (±0.16) (±0.60) (±0.20) (±0.55) (±0.40) (±0.86) (±0.17) (±0.21)

HSGE (exhaust.) 98.74 99.64 98.84 79.01 71.96 78.28 74.79 80.82 81.53
(±0.21) (±0.80) (±0.17) (±0.70) (±0.10) (±0.97) (±0.01) (±0.46) (±0.94)

92



6.6. Conclusions

6.6 Conclusions

In this chapter we have proposed to enhance the information encoded in graph
embeddings by means of hierarchical representations. We have experimentally
validated that the abstract information is able to improve the graph classification
performance.

The embedding function is based on a stochastic sampling of graphlets to obtain
the graphlet distribution within the graph. Graphlets of different sizes are con-
sidered to allow a change on the node context. Moreover, the hashing functions
are used to identify graphlets in an efficient way. Event though considering dif-
ferent size graphlets provides robustness in terms of graph distortions, they still
provide local information when we consider larger graphs. Therefore, building a
graph hierarchy allows to increase the graphlet context without increasing the time
needed for identifying the graphlet. In this work, we have carefully validated the
performance of our approach in different application scenarios, showing that we
outperform the state-of-the-art approaches in the graph classification task using
an SVM as a classifier.

Further research on improving the hierarchical graph construction may lead to a
better embedding approach. Even though the Girvan-Newman algorithm is able to
exploit the desired properties of the graph, generating clusters that allow to create
good abstractions, their time complexity is a drawback that should be studied
when considering large graphs.

Even though the achieved results are state of the art on the proposed task, we
are still dealing with hand-crafted approaches that may not be realistic in a real
scenario. With the emergence of deep learning, it has been proved the success of
this kind of models against handcrafted statistical methods. Moreover, nowadays,
these new approaches are being extended to non-Euclidean data such as graphs or
manifolds. These new family of methods is called Geometric Deep Learning.

93





Part II

Geometric Deep Learning

Geometric deep learning has emerged as the general-
ization of deep neural models to non-Euclidean data,
i.e. graphs and manifolds. These novel techniques,
have unleashed a world of possibilities when deal-
ing with structural representations. However, these
approaches were not exploited on DIAR tasks yet. In
this dissertation, we explore two models able to pro-
vide solutions to several tasks. Moreover, we propose
to combine traditional approaches overviewed in the
first Part with this new field.





7 | Geometric Deep Learning

We shouldn’t be looking for heroes, we
should be looking for good ideas.

– Noam Chomsky

This chapter introduces the concept of geometric deep learning. This novel frame-
work has leveraged the benefits of deep learning to structured graph data. Here,
we present the relevant literature works on geometric deep learning starting from
node embeddings, where the structure is just indirectly taken into account, to graph
neural networks, which are able to inject the structure at the same time as the
node features. Finally, we review the main applications on computer vision.

7.1 Geometric Deep Learning

For many years, deep learning has been proposed for a boundless number of tasks
and applications taking into account different input types. However, none of these
tasks where able to generalize to non-Euclidean input data.

• Convolutional Neural Networks (CNN). This set of methodologies have
become the standard tool when dealing with n-dimensional grids. Some
examples of their application are image classification [129], image genera-
tion [100] or 3D deep learning [140]. Even though, the adjacency matrix of
a given graph is represented as a 2-dimensional grid, the local neighborhood
of each entry of the matrix is meaningless and do not encode any spatial or
local relationship between rows or columns. Therefore, CNN methodologies,
which exploit these local relationships, are not able to deal with graph data.

• Recurrent Neural Netoworks (RNN). These approaches are well-defined
over sequential data. They have demonstrated to be state-of-the-art for
image captioning [235], video frame classification [243] and handwritten text
recognition [116]. However, in general, graphs cannot be serialized in a
sequence of nodes and their correspondent edges.

97



7. GEOMETRIC DEEP LEARNING

In this context, Geometric Deep Learning1 (GDL) has emerged as a generaliza-
tion of deep learning methods to non-Euclidean domains such as graphs and man-
ifolds [30]. This field has generated much attention in the recent years allowing
the developed models to encode structural and relational data. Several fields
have benefit from this new paradigm, for instance computer vision [239], quantum
chemistry [95] and computer graphics [152] among others.

Following the same paradigms as other machine learning approaches, graph-based
learning methods, are trained in a supervised, unsupervised or reinforcement learn-
ing manner. As a matter of fact, these training paradigms are both able to process
the graphs as a whole, but also interpret its individual compounding parts. Thus,
among others, some common tasks of the graph domain are: node classification,
relation prediction, community detection and graph classification.

7.2 Node Embeddings

Several strategies have been proposed with the objective of encoding graph nodes
into a vectorial representation, i.e. numerical features, by means of embedding
functions. The main objective is to encode local structural graph information for
each node into a feature vector. Node embeddings can be later used for tasks such
as node classification in terms of local structural contexts.

The first approaches enforce structural constraints in the embedding space. For
instance, Weston et al. [230] constrain the learned node embeddings to be close
or distant depending on the presence of edges between the corresponding nodes.
Thus, during training, the objective function is based on both, a node classifica-
tion loss and a similarity constraint. Later, Tang et al. [211] proposed a model
named LINE able to decide the first and second order similarities from the node
embeddings.

Alternatively to augment the objective functions with the desired structural prop-
erties, Perozzi et al. [168] and later Grover et al. [102] proposed to learn some
structural features based on random walks, namely DeepWalk and Node2Vec re-
spectively. The idea behind these approaches is that given a structural feature
representation, the model should be able to easily predict the nodes that surround
it. So far, these methods allow a fully unsupervised training as they do not depend
on any prior knowledge of the node information. Yang et al. [240] proposed an
extension called Planetoid which incorporates node labels in their training frame-
work. Basically, they propose to sample positive and negative pairs of nodes based
on both random walks and node labels.

Until now, in the reviewed approaches, the graph structure was only injected
indirectly taking only into account node information. The structural information,
provided by the edges, was still disregarded. In order to take full advantage of the

1http://geometricdeeplearning.com/

98

http://geometricdeeplearning.com/


7.3. Graph Neural Networks

structural information, edges have to be leveraged as well as nodes features.

7.3 Graph Neural Networks

Graph Neural Networks (GNN) were first proposed by Gori and Scarselli [101, 195]
as the first attempt to generalize neural networks to graphs. Later, Bruna et al. [32]
proposed the first formulation of CNNs working on the graph spectral domain.
However, the ability to process graph data came with a huge time complexity be-
coming inappropriate for real cases. Afterwards, the works of Henaff et al. [106],
Defferrard et al. [54] and Kipf et al. [123] addressed these computational draw-
backs.

In its simplest form, a GNN layer is defined as,

h(k+1) = ρ

 ∑
B∈A(k)

Bh(k)Θ
(k)
B

 (7.1)

where h(k) is the node hidden state at the k-th layer, ρ is a non-liniarity such as
ReLU(·), A is a set of graph intrinsic linear operators that act locally on the graph
signal such as the adjacency matrix and ΘB are learnable parameters. The set of
graph intrinsic linear operators are able to handle multi-relational graphs, however,
in most of the cases, A only contains the adjacency matrix. Taking into account
the self connections, this equation can be reformulated by considering A = {I, A}
where I and A are the identity and adjacency matrix. Thus, separating the self
connection information from the neighborhood, it is defined as

h(k+1) = ρ
(
Ih(k)Θ

(k)
self +Ah(k)Θ

(k)
neigh

)
= ρ

(
(A+ I)h(k)Θ(k)

)
. (7.2)

Several recent works have proposed different architectures. In general, these learn-
ing architectures on graphs are divided in two groups, spatial and spectral domain
respectively.

• Spatial domain methods extend the idea of CNN at the image domain by
moving a filter across nodes and applying a set of operations involving the
local neighborhood to compute a new hidden representation [67, 139].

• Spectral domain architectures take advantage of the spectral graph the-
ory [204] in order to generalize the convolution operation to arbitrary graphs
by means of the graph Laplacian [54, 123].

Recently, Gilmer et al. [95] proposed an approach named Message Passing Neural
Networks (MPNNs) as a general learning framework for graphs. This approach is
able to generalize the aforementioned methodologies to have a common pipeline.

99



7. GEOMETRIC DEEP LEARNING

Therefore, they redefine the previous spatial and spectral architectures using the
MPNN framework proposing two phases: message passing and readout. This is
defined using three arbitrary differentiable functions M (k)(·), U (k)(·) and R(·).

In the message passing phase, the hidden state h(k)
v of each node v is updated by

a node update function U (k)(·) which receives a message m(k+1)
v collected from

the neighboring nodes by means of the message function M (k)(·). This phase is
repeated during K time steps and is defined as

m(k+1)
v =

∑
u∈N (v)

M (k+1)(h(k)
v , h(k)

u , evu), (7.3)

where h(k)
u and h(k)

v are the hidden states of nodes v and u at iteration k and N (v)
denotes the neighbors of v in the graph g. Afterwards, the hidden state of node v
is updated according to the message m(k+1)

v .

h(k+1)
v = U (k+1)(h(k)

v ,m(k+1)
v ). (7.4)

In the literature, the message passing step is sometimes written as update and
aggregation, following the notation introduced in Equation 7.1, message passing
updates are formally expressed as,

h(k+1)
u = Update(k+1)

(
h(k)
u ,Aggregate(k+1)

({
h(k)
v ,∀v ∈ N (u)

}))
, (7.5)

where Update(k) and Aggregate(k) are also arbitrary differentiable functions.

The message passing phase gathers structural information from the graph and
embeds this information as node labels. Thus, the node features can now be used
for node level tasks such as node classification.

Moreover, the readout phase computes a feature vector for the whole graph based
on the set of hidden states of the nodes. Basically, it aggregates the information
across all nodes for graph classification purposes. Hence, the readout function
R(·) must be permutation invariant as the order of the nodes is not important in
a graph. It is formally defined as,

ŷ = R({h(K)
v |v ∈ V }). (7.6)

This final function is also known as global pooling layers.

Among others, some relevant GNN formulations proposed in the literature are,

Graph Convolutional Networks (GCN) [123]. Motivated by the spectral graph
theory, Kipf et al. proposed to take advantage of a first order approximation of a
spectral graph convolution. A GCN layer is formally defined as,

100



7.3. Graph Neural Networks

Figure 7.1: Illustration of a 3-head attention for node 1. Each arrow denote an
independent attention computation. Reprinted from [217].

h(k+1)
u = ρ

 ∑
v∈N (u)

h
(k)
v√

|N (u)| |N (v)|

Θ(k)

 . (7.7)

Note that this formulation applies a neighborhood normalization which gives less
weight to these messages coming from nodes with higher degrees. Previously,
Defferrard et al. [54] proposed a similar approach which is not restricted to the
first order approximation but to a given parameter.

Graph Attention Networks (GAT) [217]. Veličković et al. proposed to learn
attention weights during the message phase. In that sense, the aggregation is able
to weight the neighbors according to a learned importance. Thus, a GAT layer is
defined by

h(k+1)
u = ρ

 ∑
v∈N (u)

αuvh
(k)
v Θ(k)

 , (7.8)

where αuv are the attention weights computed following the idea proposed by
Bahdanau et al. [14],

αuv =
exp(suv)∑

w∈N (u) exp(suw)
, (7.9)

where suv = aθ

(
h

(k)
u , h

(k)
v

)
and aθ is a shared attention mechanism with learnable

weights θ. Moreover, following the Transformer [216], GAT is able to employ
multiple attention heads that are then combined via, for example, concatenation.
Figure 7.1 illustrates the multi-head attention defined by GAT networks.

Gated Graph Neural Networks (GG-NN) [139]. Li et al. proposed to formulate
the update function in terms of Recurrent Neural Networks (RNN) models. In this

101



7. GEOMETRIC DEEP LEARNING

Figure 7.2: Overview of the DiffPool methodology. Reprinted from [242].

setting, the RNN hidden state becomes the node hidden state whereas the RNN
input becomes the aggregated message. In the particular case of GG-NN, the RNN
model is a Gated Recurrent Unit (GRU) [45].

Two important concepts arise according to the neighbor contributions are whether
the models are isotropic or anisotropic. On the one hand, in the isotropic update
schemes, each neighbor contributes equally to the update of the hidden state of
the central node as it does not consider the edge direction information. Some
works introducing isotropic schemes are GCN [123], GraphSAGE [103] and Graph
Isomorphism Networks (GIN) [236]. On the other hand, anisotropic models exploit
the edge directions by weighting the contribution of each neighbor by means of
different mechanisms such as attention or gates. Important works on anisotropic
models are GAT [217], Gaussian Mixture Model Networks (MoNet) [156] andGated
Graph Convolutional Networks (GatedGCN) [26].

Finally, some architectures have explored the idea of pooling in the sense it is
used in CNNs. Hence, to encode hierarchical information in the forward pass
of the GNN. This is done by means of graph clustering techniques. Recently,
Ying et al. [242] proposed a differentiable pooling. They propose to learn a
differentiable soft cluster assignment at each layer allowing the network to obtain
a coarsened representation for the next layer. Figure 7.2 shows an overview of this
architecture.

Given these set of approaches, now, we can make use of the deep learning tool box
for graph data. Thus, elements defined initially for CNN are now available, for in-
stance, Batch normalization layers or skip connections, i.e. ResNets, Highway Nets
and DenseNets. The literature on graph neural networks and their applications is
quite large and continuously evolving. We refer the interested readers to recent sur-
vey paper for a comprehensive overview of these methodologies [19, 30, 233, 246].
Very recently, Dwivedi et al. [68] presented a reproducible benchmarking frame-
work. They introduce six different datasets to evaluate four different tasks that
are usually performed on graph data. Moreover, they present an exhaustive ex-
perimental comparison of these methods as well as some very intuitive diagrams
illustrating the main difference between the main GNN layers.

102



7.4. Geometric Deep Learning in Computer Vision

7.4 Geometric Deep Learning in Computer Vision

Geometric deep learning has provoked a paradigm shift in several computer vision
applications. Among others, here we introduce some applications that have benefit
of this novel framework in the context of computer vision.

3D vision. 3D objects are usually represented in terms of meshes which is a graph-
based shape representation. Thus, several works have proposed to exploit these
representations. For example, Smith [205] proposed a 3D object reconstruction
from images generating adaptive meshes.

Scene graph representations. Scene graphs have emerged as an important step
for image understanding. In this setting, not only the objects should be detected,
but also the relations between these objects are detected. Several works have been
proposed making use of these representation, for example image retrieval using
scene graphs or scene graph generation [9, 111, 234, 239].

Knowledge graphs. External knowledge in terms of knowledge graphs has also
benefited from GNN. For example, Shen et al. [200] exploited the semantic re-
lations between labels in order to incorporate external knowledge in the learning
process of a zero-shot sketch image hashing. Thus, a GNN is used in order to learn
a good binary signature able to incorporate information about the semantic space.

Few-shot learning. Some approaches have been proposed for the task of few-shot
learning. These frameworks benefit from the GNN paradigm in order to propagate
information among the support set. Thus, the task is formulated in terms of node
or edge classification. Moreover, these frameworks are easily extended to semi-
supervised or active learning settings [89, 121].

103





8 | Learning Graph Distances

We know not through our intellect but
through our experience.

– Maurice Merleau-Ponty

The emergence of geometric deep learning as a novel framework to deal with graph-
based representations has faded away traditional approaches in favor of completely
new methodologies. In this chapter, we propose a new framework able to combine
the advances on deep metric learning with traditional approximations of the graph
edit distance. Hence, we propose an efficient graph distance based on the novel
field of geometric deep learning. Our method employs a message passing neural
network to capture the graph structure, and thus, leveraging this information for
its use on a distance computation. The performance of the proposed graph distance
is validated on two different scenarios. On the one hand, in a graph retrieval of
handwritten words i.e. keyword spotting, showing its superior performance when
compared with (approximate) graph edit distance benchmarks. On the other hand,
demonstrating competitive results for graph similarity learning when compared
with the current state-of-the-art on a recent benchmark dataset.

8.1 Introduction

As it has been introduced in Chapter 2, when dealing with graphs, an important
property is the ability to compare them in terms of a similarity or distance. This
operation, which is trivial when considering feature vectors defined in Rn, is not
properly defined in the graph domain [50, 85]. Due to the inherent graph flexi-
bility, it forces us to adopt some definitions of dissimilarity (similarity) ad hoc to
particular purposes. This problem was introduced by Borgwardt [22] and formally
defined in Definition 2.2.1.

Lots of efforts have been made in this direction. In the literature, error-tolerant or
inexact graph matching algorithms have been proposed and already reviewed in
Chapter 2. Let us remind about the graph edit distance (GED) [88] which is one of
the most popular error-tolerant graph matching methods. In this case, the graph
comparison problem is formulated in terms of finding the minimum transformation
cost in such a way that an isomorphism exists between the transformed graph g1

105



8. LEARNING GRAPH DISTANCES

Figure 8.1: First siamese architecture proposed for signature verification.
Reprinted from [29].

and the second one g2.

The main drawback of the techniques to compute the GED is that the time com-
plexity is exponential in terms of the number of nodes of the input graphs. Hence,
GED computation is unfeasible in a real scenario, where there may be no con-
straints in terms of the graph size. Therefore, several algorithms have been pro-
posed to cope with this complexity [82, 181]. However, these approximate algo-
rithms only consider very local node structures in their computation and they do
not adapt their costs according to the problem being addressed.

Inspired by this efficient GED approximations, and the powerful framework pro-
vided by the new advances in geometric deep learning, reviewed in Chapter 7, we
propose to leverage its effectiveness as a learning framework to enhance our graph
distance computation. Therefore, we are facing a graph metric learning problem.
It can be formulated as a contrastive learning problem that finds contrast between
similar and dissimilar objects. A siamese architecture is suitable for this problem.
Bromley et al. [29] proposed it for signature verification. Siamese networks make
use of the same model and weights on two separated branches in order to learn
a representation where distances can be computed. Figure 8.1 shows the first
siamese architecture introduced for metric learning. Later, several approaches
have extended this idea, being triplet loss [228] one of the most successful meth-
ods. Recently, novel approaches have focused on extending this concept in order
to exploit groups of samples instead of pairs or triplets [70]. Moreover, contrastive
learning has been used, not only as a metric learning framework but it has also
raised some attention due to its astonishing improvement on unsupervised learning
tasks [43].

106



8.2. Related Work on Graph Metric Learning

To the best of our knowledge, our paper [176] was the first work that introduced
the idea of learning a graph metric by means of message passing architectures.
In this chapter, we propose a triplet learning framework for the graph metric
learning problem. In our proposed approach an enriched graph representation is
learned by means of a graph neural network. In addition, our proposed distance
is based on the Hausdorff Edit Distance introduced by Fischer et al. [82] as
an efficient approximation of the real graph edit distance. In comparison, our
framework has the ability to enrich the initial graph representation by means
of message passing stages which learns the edit cost operations. Furthermore,
insertion and deletion costs, are dynamically learned according to the node local
context. Therefore, we avoid a costly manual process on setting the edit cost
operations per each specific problem. The proposed approach is validated using
standard graph datasets for keyword spotting and object classification. In this
application scenario, the proposed approach based on a graph neural network
shows competitive results demonstrating the efficacy of our learning framework.

The rest of this chapter is organized as follows. Section 8.2 introduces the related
work on graph neural networks for graph metric learning. Section 8.3 and 8.4 pro-
poses our learning framework and the corresponding learning strategy. Section 8.5
evaluates the proposed approach in two different scenarios. Finally, Section 8.6
draws the conclusions and future work.

8.2 Related Work on Graph Metric Learning

As mentioned in the introduction, learning an appropriate distance or similarity
between data points has been tackled by the area of metric learning. Neural
networks have been widely used as the learning framework for similarity problems.
Promptly, siamese neural networks were adopted as a family of neural networks
consisting of two identical networks with shared weights for similarity learning. For
example, Baldi et al. [17] makes use of a siamese model for fingerprint recognition.
In the particular application field of DIAR tasks, Bromley et al. [29] presented a
siamese architecture for signature verification. Siamese neural networks use pairs
of samples to train with positive and negative examples i.e. being similar or not.
Later, several approaches have extended this idea in order to take always into
account a positive and a negative example. These approaches are known as triplet
networks [228]. In this case, three identical networks with shared weights are used
to bring similar examples together and dissimilar examples to be far apart.

Inspired on these works, several papers appeared extending these ideas to the
graph domain. Thus, we proceed to review a handful of approaches facing the
graph similarity learning problem. Li et al. [138] presented two different models
to solve the graph similarity problem, on the one hand, a graph embedding model,
and on the other hand, a graph matching network. Both models can be trained
with pairs or triplets. Let us briefly review each one of these models.

107



8. LEARNING GRAPH DISTANCES

Figure 8.2: Illustration of the two models proposed by Li et al. [138]. Reprinted
from [138].

• Graph embedding model: This model, illustrated in Figure 8.2 (left),
takes advantage of siamese GNN’s to embed the given graphs into a vectorial
space. Then, given the pair of vectorial representations, a similarity metric
in the vector space can be computed by means of the Euclidean, cosine or
Hamming similarities. The model is trained with a margin-based pairwise
loss or a margin-based triplet loss respectively. Very similar approaches have
also been presented in other works, for instance Chaudhuri et al. [42] who
trained a similar approach with contrastive loss or the work introduced by
Zhang et al. [244] which uses the L2 loss to mimic the real similarity score.

• Graph matching networks (GMN): Similarly to the previous architec-
ture, two GNNs with shared weights process the input graphs. However, in
this case, the authors propose to modify the node update module in order
to take into account not only the aggregated messages on the edges of each
graph, but a cross-graph message which measures how well the nodes match
from one graph to the other. Finally, following the same idea as the previous
model, each graph is finally converted into a vectorial representation which
is later used in a similarity metric and trained with the same loss. Figure 8.2
(right) presents the proposed architecture. Similarly, Wang et al. [225] also
proposed a cross-graph convolution for their model, however, to train this
model, they propose to use the cross-entropy loss at node-to-node level.

Another interesting approach, namely SimGNN, was proposed by Bai et al. [15].
In this work, the authors proposed to combine graph-level embeddings and node-
node similarity scores by taking their histogram of features. However, as the
histogram function is not differentiable, this methodology still relies on the graph-
level embedding for computing the final similarity score. Their model is trained
according to the real graph edit distance for small datasets whereas the smallest
distance computed by three well-known approximate algorithms is taken to handle
large datasets. The authors extended this work by proposing a new model named
GraphSim [16]. In this architecture, only three node-node similarities scores are

108



8.3. The Learned Graph Distance Framework

Figure 8.3: Illustration of the GraphSim model proposed by Bai et al. [16].
Reprinted from [16].

used corresponding to node embeddings at different scales. After that, the similar-
ity matrices are treated as images and a CNN is used to process them to discover
the optimal node matching pattern. However, to deal with the permutation in-
variant ordering of graph nodes, they propose a BFS ordering. It also allows the
use of CNN as they claim that the required spatial locality performs properly.
Moreover, the similarity matrices are first padded to max(|V1|, |V2|), where V1 and
V2 are the node sets of the graphs involved and resized to meet the expected size.
Finally, following the SimGNN training, a precomputed similarity score is used to
lead the training. Figure 8.3 overviews the proposed GraphSim architecture.

Compared to these works, our model makes use of a node-node distance matrix
to obtain a global graph distance metric. Therefore, we are not obtaining a global
vectorial representation of our graphs nor applying cross-convolution layers in our
graph neural network architecture. This allows us to make use of any differentiable
graph or set distance, which preserves the permutation invariance property, while
avoiding the computational overhead of the cross-convolution layers. Moreover,
we avoid the loss of structural information of other approaches when obtaining
a vectorial graph representation by explicitly dealing with the structure in the
distance itself.

8.3 The Learned Graph Distance Framework

This section is devoted to present our proposed learning framework for graph
distance. The proposed model learns the Hausdorff edit distance, proposed by
Fischer et al. [82]. As a learning setting, the proposed architecture can be trained

109



8. LEARNING GRAPH DISTANCES

Figure 8.4: Overview of our distance learning framework. Given a triplet of
graphs (ga, g+, g−) as the anchor, positive and negative samples respectively, the
GNN φ(·) learns a graph representation per each one (φ(ga), φ(g+), φ(g−)), which
are matched by means of a learned distance dθ(·).

either with pairs or triplets of graphs. Hence, as ground-truth, only the information
on whether or not two graphs belong to the same class is required. Note, that in our
proposed approach, we do not require the node correspondence information nor the
real graph edit distance. Instead, the node assignment is implicitly learned by our
system. Moreover, the edit costs for both insertions, deletions and substitutions are
also learned by our framework. Therefore, we do not require to manually tune these
parameters following the traditional pipeline. Even though our framework can be
trained using pairs, in this work we will focus on the triplet setting. Therefore, we
will make use of three GNN with shared weights.

Figure 8.4 shows a graphical outline of our proposed approach. Our pipeline is
divided in two stages. Firstly, a graph neural network φ(·) is used to obtain a
node-level embedding which codifies the local context information, in terms of
structure, for each node. Secondly, a novel graph similarity algorithm based on
the Hausdorff edit distance is proposed as a technique to compare two graphs
dθ(·). Observe that the graph similarity can be replaced by any differentiable
graph distance approach.

Each stage is carefully described in the following sections. First, the GNN ar-
chitecture is explained in detail. Afterwards, the proposed graph similarity is
developed.

110



8.3. The Learned Graph Distance Framework

8.3.1 Learning Node Embeddings

The first stage of our framework is a graph neural network architecture φ(·) able
to learn a new graph representation in terms of node embeddings. Our architec-
ture consists of K propagation layers that map the input graph to an enriched
representation. Thus, each propagation layer takes a set of node representations
at layer k, {h(k)

i }i∈V and maps it to a new node representation {h(k+1)
i }i∈V at

layer k+ 1. We evaluate the following two different architectures according to two
different message passing strategies.

GAT-based model: This model uses graph attention networks (GAT), intro-
duced by Veličković et al. [217]. We have already described this model in Sec-
tion 7.3. It provides an anisotropic update scheme by means of its attention
weights. Moreover, a multi-head attention has been used to enrich the model
capacity and to stabilize the learning process. In our setting, we use these lay-
ers with residual connections, four attention heads and BatchNorm layers [110]
with the exception of the last layer. The attention heads are concatenated at the
intermediary layers and averaged for the final layer.

GRU-based model: This architecture is based on the gated graph neural net-
works (GG-NN) proposed by Li et al. [139]. Originally, the message function is
formulated as

M(h(k)
v , h(k)

u , evu) = Aevuh
(k)
u ,

where Aevu
is a learned matrix for each possible edge label. Note that we are

restricted to a discrete set of labels. In order to overcome this constrain, Gilmer
et al. [95] proposed to use a modified message function defined as

M(h(k)
v , h(k)

u , evu) = A(evu)h(k)
u ,

where A(evu) is a neural network which maps the edge vector to a matrix d × d.
This modification allows the use of non-discrete information as edge attributes.
Finally, the update function is defined as

U(h(k)
v ,m(k+1)

v ) = GRU(h(k)
v ,m(k)

v ),

where GRU is the Gated Recurrent Unit [45]. In its original formulation, the
first node hidden state is padded with zeros to meet the size defined by the GRU,
however, we propose to use a fully-connected layer as a first node embedding.
Moreover, we propose to incorporate edge features according to the source and
destination node according to

evu = MLP(|h(1)
v − h(1)

u |)

as proposed in [89]. There, MLP stands for multi-layer perceptron and the absolute
value is used to preserve the symmetry of the edge direction.

111



8. LEARNING GRAPH DISTANCES

8.3.2 Graph Distance or Similarity

Following the idea of the Hausdorff edit distance (HED) defined in Equation 2.2,
we defined the set of edit operations in terms of insertions, deletions and substitu-
tion. Moreover, we propose to dynamically adapt the insertions and deletion costs
according to the application domain. With this aim, we introduce two learnable
costs c(ε→ v) and c(u→ ε) for the insertion and deletion of nodes. Thus, taking
advantage of the computed node embeddings, our nodes are enriched with infor-
mation aggregated from their local context and, therefore, its importance within
the graph. Thus, we propose to take advantage of this in order to define two
neural networks ϕi(·) and ϕd(·), defined as ϕ∗ : Rn → R+, able to decide the cor-
responding cost of this operation. In our experiments, ϕi(·) and ϕd(·) are the same
network with shared weights as we consider the insertion and deletion operations
to be symmetric. In addition, we take the absolute value as the insertion and
deletion costs must be positive.

Therefore, we define the distance between two graphs g1 = (V1, E1, µ1, ν1) and
g2 = (V2, E2, µ2, ν2) as

dθ(g1, g2) =
1

|V1|+ |V2|

 ∑
u∈V1∪{ε}

min
v∈V2∪{ε}

cθ(u, v)

+
∑

v∈V2∪{ε}

min
u∈V1∪{ε}

cθ(u, v)

 ,

(8.1)

where θ are learnable parameters and cθ(·, ·) is the corresponding learnable cost
function defined as

cθ(u, v) =


ϕd(h

(K)
u ; θ) if (u→ ε) is a deletion,

ϕi(h
(K)
v ; θ) if (ε→ v) is an insertion,

d(h(K)
u ,h(K)

v )
2 otherwise.

(8.2)

In our scenario, the edges are not taken into account as we consider the local
structures to be already encoded during the message passing phase. However,
edges can be incorporated to Equation 8.2, considering the adjacent edges as nodes
and applying the same distance dθ(·) with different learned weights.

Observe that an important aspect of the proposed distance is the fact that the
node correspondence might not be symmetric. Figure 8.5 illustrates this issue,
moreover, we also show the effect of considering insertions and deletions as a ε
node in Figure 8.5(b). Note that not considering ε nodes as proposed in [176] and
illustrated in Figure 8.5(a), constrains the learning capabilities of our framework.

A limitation of our approach is that in some scenarios it might lose some node
feature information in favor of encoding the local node structure. For this reason,

112



8.4. Training Setting and Learning Objective

(a) (b)

Figure 8.5: Assignment problem according to the proposed distance. (a) only
substitutions are considered, (b) insertions and deletions are included as an extra
epsilon node.

we optionally combine the original graph information into Equation 8.2, that is
redefined as,

cθ(u, v) =


τd + ϕd(h

(K)
u ; θ) if (u→ ε) is a deletion,

τi + ϕi(h
(K)
v ; θ) if (ε→ v) is an insertion,

d(h(K)
u ,h(K)

v )+d(u,v)
2 otherwise,

(8.3)

where τd, τi > 0 are user-defined parameters to fix the minimum cost for node
deletion and insertion respectively. Moreover, d(u, v) corresponds to the distance
computed on the original node attributes, for instance, the (x,y)-coordinates. We
find this setting helpful to avoid incorrect matchings between nodes that share
structurally similar neighborhoods.

8.4 Training Setting and Learning Objective

In this work, we follow the idea of triplet networks to exploit the ranking proper-
ties of the desired metric. Thus, we use three GNN models with shared weights
following the architecture illustrated in Figure 8.4.

The model is trained in a supervised manner, so we know which pairs of graphs
belong to the same class. Compared to other approaches, we do not require node
assignments nor a pre-computed similarity score. All models were trained using
the Adam optimizer [122] with weight decay i.e. L2 regularization. The learning
rate of 0.001 is multiplied by 0.95 every 5 epochs to decrease its value, and we
applied early stopping to finish our training process.

The objective function to minimize is the triplet loss, also known as margin ranking
loss. This learning objective receives three samples in which we already know its
ranking, i.e. which pair should have a higher similarity score or distance. Let
{ga, g+, g−} be a triplet training sample where, ga is the anchor graph, g+ is a
positive graph sample i.e. a sample different from ga but belonging to the same
class and g− is a negative graph example i.e. a sample belonging to a different

113



8. LEARNING GRAPH DISTANCES

Figure 8.6: Illustration of the triplet learning objective. The anchor graph
illustrated as a star should be close to its positive pair, in blue, and farther than
a margin µ to its negative counterpart.

Algorithm 8.1 Training algorithm for our proposed model.
Input: Input data G; max training iterations T
Output: Networks parameters Θ = {Θφ, θ}.
1: repeat
2: Sample triplet mini-batches {ga, g+, g−}NB

i=1

3: L ← Eq. 8.5
4: Θ← Θ− Γ(∇ΘL)
5: until Convergence or max training iterations T

class. Then, the triplet loss is defined as

L(δ+, δ−) = max(0, µ+ δ+ − δ−), (8.4)

where µ is a fixed margin parameter, δ+ = dθ(φ(ga), φ(g+)) is the distance with
respect to the positive sample and δ− = dθ(φ(ga), φ(g−)) is the distance with
respect to the negative sample. Figure 8.6 illustrates how this loss performs. Note
that positive pairs are pushed to be close each other whereas negative samples are
separated at least by the predefined margin µ.

Moreover, following the idea introduced in [18], we apply an in-triplet hard negative
mining which means that the anchor and positive samples can be swapped in
case the positive sample is harder than the anchor one. Hence, we define δ′− =
dθ(φ(a), φ(n)) and δ∗ = min(δ−, δ

′
−). Finally, the new loss with the anchor swap

is defined as

L(δ+, δ∗) = max(0, µ+ δ+ − δ∗). (8.5)

Algorithm 8.1 presents our training strategy, where Γ(·) denotes the optimizer
function.

114



8.5. Experimental Validation

8.5 Experimental Validation

For validating the proposed approach, a keyword spotting application in historical
manuscripts has been considered as our main application scenario. Moreover, a
final experiment on a classical mesh graph dataset is conducted. Our empirical
evaluation demonstrate that the proposed approach provides competitive results
when compared to the state-of-the-art. All the code is available at github.com/
priba/graph_metric.pytorch.

8.5.1 Historical Keyword Spotting

In Document Image Analysis and recognition, Keyword Spotting (KWS), also
known as word spotting, has emerged as an alternative to handwritten text recog-
nition for documents in which the transcription performance is not satisfactory.
Therefore, KWS is formulated as a content-based image retrieval strategy which
relies upon obtaining a robust word image representation and a subsequent re-
trieval scheme.

Dataset Description

The HistoGraph dataset [207, 208] is a graph database for historical keyword
spotting evaluation1. It consists of different well known manuscripts.

George Washington (GW) [79]: This database is based on handwritten letters
written in English by George Washington and his associates during the American
Revolutionary War in 17552. It consists of 20 pages with a total of 4, 894 handwrit-
ten words. Even tough several writers were involved, it presents small variations
in style and only minor signs of degradation.

Parzival (PAR) [79]: This collection consists of 45 handwritten pages written by
the German poet Wolfgang Von Eschenbach in the 13th century. The manuscript
is written in Middle High German with a total of 23, 478 handwritten words.
Similarly to GW, the variations caused by the writing style are low, however,
there are remarkable variations caused by degradation.

Alvermann Konzilsprotokolle (AK) [169]: It consists of German handwritten
minutes of formal meetings held by the central administration of the University
of Greifswald in the period of 1794 to 1797. In total 18, 000 pages were used with
small variations in style and only minor signs of degradation.

Botany (BOT) [169]: It consists of more than 100 different botanical records

1Available at http://www.histograph.ch/
2George Washington Papers at the Library of Congress from 1741-1799, Series 2, Letterbook

1, pages 270-279 and 300-309, https://www.loc.gov/collections/george-washington-papers/
about-this-collection/

115

github.com/priba/graph_metric.pytorch
github.com/priba/graph_metric.pytorch
http://www.histograph.ch/
https://www.loc.gov/collections/george-washington-papers/about-this-collection/
https://www.loc.gov/collections/george-washington-papers/about-this-collection/


8. LEARNING GRAPH DISTANCES

(a) George Washington (GW)

(b) Parzival (PAR)

(c) Alvermann Konzilsprotokolle (AK)

(d) Botany (BOT)

Figure 8.7: Pre-processed word examples of the four datasets.

made by the government in British India during the period of 1800 to 1850. The
records are written in English and contain certain signs of degradation and es-
pecially fading. The variations in the writing style are noticeable especially with
respect to scaling and intra-word variations.

Figure 8.7 provides some examples of pre-processed word images from which the
graphs are created. Observe that the word segmentation of AK and BOT datasets
is imperfect [169]. Moreover, these two datasets do not provide a validation set.
So, some images from the training set have been used for validation. Table 8.1
provides an overview of the dataset in terms of number of words.

Table 8.1: Dataset overview in terms of number of keywords and word images
for training, validating and testing respectively

Dataset Keywords Train Validation Test

GW 105 2,447 1,224 1,224
PAR 1,217 11,468 4,621 6,869
BOT 150 1,684 - 3,380
AK 200 1,849 - 3,734

To obtain a graph for each word in these datasets, the two most promising graph
constructions introduced in [208] have been used:

• Keypoint: Characteristic points are extracted from the skeletonized word

116



8.5. Experimental Validation

image. Moreover between the connected characteristic points, equidistant
nodes are inserted on top of the word skeleton.

• Projection: An adaptive grid is generated according to the vertical and
horizontal projection profiles. Then, nodes are inserted in the corresponding
center of mass of each grid cell. Moreover, undirected edges are inserted if
nodes are directly connected by a stroke.

All the datasets presented in this work only contain spatial and structural infor-
mation. This means that nodes are labeled with its normalized (x,y)-position on
the image and that edges are unlabeled.

Experimental Protocol

The experiments reported in this section use K = 3 GNN layers and, for the edit
cost operation described in Equation 8.3, we experimentally set the parameters
τi and τd to 0.5. Following the evaluation schemes of previous word spotting
methodologies, we performed our experiments on two evaluation protocols.

• Individual: Each query image follows the traditional retrieval pipeline.
Thus, queries are matched against the elements in the gallery and each rank-
ing is evaluated independently.

• Combined: A query consists of a set of graphs Q = {q1, . . . , qt} where all
the instances q ∈ Q represent the same keyword. In this case, we consider
the minimal distance achieved on all t query graphs. This second evaluation
protocol was adopted in some previous graph-based word spotting works [8,
208]. The motivation of this setting is to mitigate the structural bias provided
by the query instance, i.e. different handwriting styles provide extremely
different graphs, so, in terms of graph distances, it is unrealistic to consider
them from the same class.

For the evaluation, we use the mean Average Precision (mAP), a classic informa-
tion retrieval metric [190]. First, let us define Average Precision (AP) as

AP =

∑| ret |
n=1 P@n× r(n)

| rel |
, (8.6)

where P@n is the precision at n and r(n) is a binary function on the relevance of
the n-th item in the returned ranked list. Then, the mAP is defined as:

mAP =

∑Q
q=1 AP(q)

Q
, (8.7)

where Q is the number of queries.

117



8. LEARNING GRAPH DISTANCES

Ablation Study

We first empirically investigate the influence of the margin parameter µ to each
model, as well as the importance of the GNN layers choice. Table 8.2 presents a
comparison of the different settings, providing the averaged mAP of 4 runs and
its corresponding standard deviation. This evaluation has been done for all the
datasets and for both graph representations viz. Keypoint and Projection. The
evaluation protocol in this experiment is Individual as we believe that it is the
natural experimental setting for this problems.

From these results, we observe that GRU-based models are slightly better, allowing
a higher degree of deformations between words from the same class. Note that
both datasets AK and BOT do contain imperfect word segmentations. In addition,
these datasets contain samples written with a more artistic calligraphic style as
shown in Figure 8.7. Thus, the artistic strokes are drivers of a higher degree of
complexity. Observe that the performance drop in BOT dataset is also explained
by the artistic nature of the dataset.

Additionally, the Keypoint representation performs the best on the GW dataset,
since the strokes are simpler and its structure in terms of the binary image skeleton
is more relevant for a proper retrieval. Finally, we observe that a higher margin µ is
more adequate for the GAT-based models whereas it’s harmful for the GRU-based
one.

Table 8.2: Study on the GNN model and margin parameter of the proposed
model. Mean average precision (mAP) and standard deviation (average on four
runs) for graph-based KWS system on George Washington (GW), Parzival (PAR)
Alvermann Konzilsprotokolle (AK) and Botany (BOT) datasets.

Model µ GW PAR AK BOT

mAP ± mAP ± mAP ± mAP ±

K
ey

p
oi

nt

GAT 1 72.49 1.169 66.46 3.162 62.90 1.325 39.86 0.396
10 76.92 2.309 73.14 0.973 62.72 1.783 41.52 0.782

GRU 1 72.86 3.331 67.27 1.281 64.42 1.003 39.69 0.532
10 68.45 2.715 48.59 9.571 60.84 1.127 38.22 0.778

P
ro

je
ct

io
n GAT 1 67.86 2.379 70.77 1.906 63.44 1.233 39.12 2.037
10 70.25 3.431 75.19 0.755 62.72 1.518 38.83 2.801

GRU 1 68.09 1.234 71.07 1.933 65.04 1.226 42.83 0.568
10 63.39 4.222 52.32 1.298 60.51 1.451 37.59 0.778

118



8.5. Experimental Validation

Results and Discussion

Table 8.3 compares with graph-based methodologies. In this setting we follow
the Combined evaluation protocol reported by [8, 208]. For each dataset and
graph representation, we use the best model reported in the previous section.
Observe that, for a fair comparison, that is, using the same graph representation,
we outperform both AED [181] and HED [82] on all the datasets but AK, where we
obtain very similar results. However, the ensemble methods reported in [208] are
able to obtain a better performance on the datasets with more variability. Note
that these ensembles combine, in different ways, the graph distances computed on
different graph representations of the same images. Therefore, we do not consider
it a fair comparison but a remarkable fact that the performance of our system is
able to outperform them in two of the datasets while obtaining competitive results
on the other two.

Table 8.3: Comparison against state-of-the-art on graph-based KWS techniques.
Mean average precision (mAP) for graph-based KWS system on GW, PAR, AK
and BOT datasets.

Distance Representation GW PAR AK BOT

AED [181] Keypoint [8] 68.42 55.03 77.24 50.94
Projection [8] 60.83 63.35 76.02 50.49

E
ns
em

bl
e
[2
08
] min 70.56 67.90 82.75 65.19

max 62.58 67.57 82.09 67.57
mean 69.16 79.38 84.25 68.88
sumα 68.44 74.51 84.77 68.77
summap 70.20 76.80 84.25 68.88

HED [82] Keypoint [8] 69.28 69.23 79.72 51.74
Projection [8] 66.71 72.82 81.06 51.69

Our Keypoint 78.48 79.29 78.64 51.90
Projection 73.03 79.95 79.55 52.83

Table 8.4 shows a comparison with non-graph based approaches. In particular,
we compare against three state-of-the-art learning-based reference systems of the
ICFHR2016 competition [169]. In this case, the evaluation of these learning-based
frameworks follows the protocol described in the competition. Thus, queries of the
same query keyword are considered to be independent. Note that, due to this query
protocol, the learning-based frameworks are not directly comparable to the state-
of-the-art graph-based KWS results that we have reported above. In this table, we
observe the superiority of learning methods working directly on the image domain.
In particular, PHOCNet [209] leads to stunning accuracies for this task. Their
method estimates the Pyramidal Histogram of Characters (PHOC) representation
of word images. However, the proposed graph-based approach, is able to provide a

119



8. LEARNING GRAPH DISTANCES

(a) (b)

(c) (d)

Figure 8.8: Visualization of the learned node correspondance. First row, shows
the node matching from top to bottom; the second row of the figure shows de
opposite. (a)–(d) “Letters”–“Letters”; (b)-(d) “send”–“Letters”

new step towards closing the gap between structural and statistical methodologies
on this kind of tasks. In addition, the proposed approach is able to deal with the
noise introduced by the graph construction.

Table 8.4: Comparison against non-graph learning based systems. Mean average
precision (mAP) for graph-based KWS system on AK and BOT datasets.

Method Representation AK BOT

CVCDAG [6] - 77.91 75.77
PHOCNet [209] - 96.05 89.69
QTOB [231] - 82.15 54.95

Our Keypoint 64.42 41.52
Projection 65.04 42.83

Finally, Figure 8.8 provides qualitative examples of our matching framework for a
positive and negative sample. The first row provides the top to bottom matching
whereas the second row shows the opposite, from the bottom to the top. Notice
that in the positive example, both directions are much more consistent than in the
negative case.

120



8.5. Experimental Validation

8.5.2 Experimental Comparison to GMN

Among the graph metric learning approaches in the literature, the Graph Matching
Networks (GMN) work [138] is the most prominent one. In this section, we propose
an extra experiment to compare with their work.

Dataset Description

The IAM Graph Database Repository [180] provides several graph datasets cov-
ering a wide spectrum of different applications. In particular, we focused on the
COIL-DEL dataset. The COIL-100 [160] consists of 100 object images at different
poses. In order to construct the COIL-DEL dataset, these images were converted
into mesh graphs by means of the Harris corner detection algorithm followed by a
Delaunay triangulation. COIL-DEL is divided in 2,400, 500 and 1,000 graphs for
training, validation and test respectively. In average these graphs have 21.5 nodes
and 54.2 edges. Thus, they are rather small graphs.

Experimental Protocol

In these experiments, we followed the same experimental protocol introduced by
Li et al. [138], so we evaluated our method on two different metrics:

• pair AUC: The area under the ROC curve for classifying pairs of graphs as
similar or not on a fixed set of 1,000 pairs.

• triplet accuracy: The accuracy of correctly assigning a higher similarity
to the positive pair in a triplet than a negative pair on a fixed set of 1,000
triplets.

Note that the fixed pairs and triplets are not the same from the original paper. We
performed a random selection of these pairs and triplets while trying to balance
the number of examples per class.

Results and Discussion

Table 8.5 presents a comparison to the state-of-the-art techniques on graph met-
ric learning. In particular, we compare with the different architectures proposed
in [138].

It is not surprising that their GMN technique outperforms our proposed model
as they do incorporate cross-graph connections following an attention paradigm.
Therefore, the correspondence is learned end-to-end in a much robust way. How-
ever, this is only feasible in rather small datasets as it incorporates a huge com-
putational overhead. Notice also, that their GNN and Siamese-GNN models just

121



8. LEARNING GRAPH DISTANCES

obtain a slightly better performance than our proposed approach. However, when
dealing with such small graphs it is hard to compare against embedding based
approaches as they are able to encode the graph characteristic features without a
huge loss of information.

In this extra experiment, we have also evaluated the effect on the choice of GNN
models, the number of layers and the margin parameter µ. From this table, we
conclude that the GRU-based models are drivers of a better performance on these
experiments. Moreover, we find important to set our margin parameter to 1.
The number of layers have not proven to bring a boost on performance on this
particular dataset. Overall, our best model is able to obtain comparable results
against GMN in this small dataset.

Table 8.5: Performance comparison on the COIL-DEL dataset against the
methodologies introduced in [138]. We studied the effect of the proposed GAT
and GRU models, as well as, the number of layers and margin parameter µ.

Model # Layers (K) µ Pair AUC Triplet Acc

GCN [138] - - 94.80 94.95
Siamese-GCN [138] - - 95.90 96.10
GNN [138] - - 98.58 98.70
Siamese-GNN [138] - - 98.76 98.55
GMN [138] - - 98.97 98.80

Our GAT 3 1 97.82 96.74
10 96.22 96.94

5 1 97.85 96.94
10 97.70 97.54

GRU 3 1 98.08 97.50
10 96.25 95.69

5 1 97.56 97.60
10 95.36 96.07

8.6 Conclusions

In this chapter, we have proposed a triplet GNN architecture for learning graph
distances. Our architecture is able to learn node embeddings based on structural
information of nodes local contexts. These learned features lead to an enriched
graph representation which is later used in the distance computation. Moreover,
we extended the graph edit distance approximation viz. Hausdorff edit distance,
to the new learning framework in order to learn its operation costs within an end-
to-end fashion. We have validated our proposed architecture on a graph retrieval

122



8.6. Conclusions

scenario, in particular, we faced a keyword spotting task for handwritten words.
Finally, we demonstrated competitive results against state-of-the-art, learning-
based methods for graph distance learning.

Several future research lines emerge taking as starting point the proposed frame-
work. Firstly, the learned distance does not represent the exact graph edit distance
but a metric between graphs that achieves the desired ranking properties, i.e. it
distinguishes graphs belonging to the same class. In that sense, the obtained
distance depends on our graph classification rather than being an unsupervised
approach such as the traditional definition of graph edit distance. Hence, future
research could focus on obtaining the real graph edit distance or at least, ob-
tain a better approximation making use of lower and upper bounds. Secondly,
the proposed framework do not exploit the edge structure at matching time as
we considered it implicitly encoded as node features. However, leveraging the
edges information at matching time might lead to better matching results. An-
other promising line of research relates to the use of different graph pooling layers
for reducing the size of large graphs before computing the learned Hausdorff edit
distance.

123





9 | Table Detection in Invoice Documents

Bloody paperwork [. . . ]
You can’t move without a form.

– Harry Tuttle, Brazil

Tabular structures in documents offer a complementary dimension to the raw tex-
tual data, representing logical or quantitative relationships among pieces of infor-
mation. In digital mail room applications, where a large amount of administrative
documents must be processed with reasonable accuracy, the detection and inter-
pretation of tables is crucial. Table recognition has gained interest in document
image analysis, in particular in unconstrained formats such as absence of rule
lines and unknown information of rows and columns. With the recent research
advances in information extraction, automatic processing of administrative docu-
ments has gained popularity. However, these documents usually contain sensitive
contents limiting the amount of public benchmarking datasets. In this chapter, we
propose a graph-based approach for detecting tables in document images which do
not require the raw content of the document. Therefore, the sensitive content is
previously anonymized and, instead of using the raw image or textual content, we
make use of a purely structural approach to keep sensitive data anonymous. Our
framework makes use of graph neural networks in order to describe the local repet-
itive structures that constitute a table. In particular, our main application domain
are invoice documents. We have carefully validated our approach in two invoice
datasets and a modern document benchmark. Our experiments demonstrate that
table structures can be detected by purely structural approaches. Additionally, due
to the scarcity of benchmark datasets for this task, we have contributed to the
community a novel dataset derived from the RVL-CDIP invoice data.

9.1 Introduction

This chapter reports on the research developed in the scope of an industrial collab-
oration with omni:us1, a German-based company leader on the automatic process-
ing of administrative documents, and in particular invoices. Thus, in this chapter,
we present a research that has been motivated by the real needs of the industry.

1https://omnius.com/

125

https://omnius.com/


9. TABLE DETECTION IN INVOICE DOCUMENTS

Moreover, all the knowledge generated in this chapter has been transferred to the
before-mentioned company.

Extracting information from administrative documents in digital mailroom appli-
cations is a common task in various domains including finance, insurance, manu-
facturing, and trading. The manual extraction of the relevant information is often
a tedious and time consuming process. The ultimate goal of automatic information
extraction methods is to reduce the manual effort and speed up the overall process.
For forms and structured documents with simple named entities such as names,
dates, and prices, the existing extraction methods can already achieve a high ac-
curacy. However, for semi-structured or unstructured documents with challenging
contents like addresses, tables or some specific details, the automatic extraction is
not yet good enough and still requires human assistance and validation.

Tabular layouts have been, over centuries, one of the main instruments to com-
municate ideas through documents. We refer to tabular layouts in the broadest
sense, i.e. information terms organized in a two-dimensional arrangement with
some perceptual organization rules, in terms of horizontal and vertical alignments.
Such organization of information offers a complementary dimension to the plain
document contents, showing logical or quantitative relationships among pieces
of information. Tables are graphical structures that visually show relationships
among named entities, giving a rich semantic message beyond the basic literality
of the constituent terms. Table structured layouts are present in documents of
different types and time periods. Parishes have been registering over centuries
birth, marriage and death events in manuscripts organized in tabular arrange-
ments. In 1869 the Russian chemist Dmitri Mendeleev presented in a manuscript
a system to arrange the chemical elements. The periodic table has become an
icon of science and culture2. The public administration, due to socio-political
models based on the rule of law introduced in the 19th century, had to develop
mechanisms for collecting and quantifying the composition of the population and
sources of wealth. Civil and notarial documents like census, tax, election records
among many others, all of them mainly in tabular form, proliferated as infor-
mation collection documents. In the specific case of administrative documents,
they are very often semi-structured, in other words, without a fixed layout but
sharing a common set of components being header, footer, sender and recipient
some typical examples. This spatial arrangement can be roughly perceived as a
tabular layout. A key observation is that humans, when reading, perceive tables
because of the observation of repetitive patterns. The Gestalt principles of visual
perception [146] can be applied, table items have a regular arrangement, with a
continuity in horizontal and vertical directions.

Moreover, administrative documents, in particular, invoices, usually contain sen-
sitive information (e.g. names, addresses, bank details, health information) that
should be protected. Therefore, privacy policies may impose limitations with re-

2The United Nations has declared 2019 as the International Year of the Periodic Table, https:
//iypt2019.org/.

126

https://iypt2019.org/
https://iypt2019.org/


9.1. Introduction

(a) (b) (c) (d)

Figure 9.1: Example of several anonymized administrative documents. (a) In-
voice taken from the CON-ANONYM dataset; (b) modern document belonging
to the cTDaR table detection competition; (c-d) invoices obtained from the RVL-
CDIP dataset.

gards to the document handling that may prevent the document to be sent to a
cloud service. For instance, some works have studied how to share models keeping
the training data private [247]. Taking this into consideration, we constrained
our problem not to rely on the document contents, but pre-processed anonymized
data. Figure 9.1 shows some examples of documents containing one or more tables
without any visual cues. Note that this is the only information which is provided
to our system. Later in this dissertation, we will analyze these documents in more
detail. Before further reading, we suggest the reader to try to spot the table re-
gions on these documents as we will later see which are the limitations of our
approach when restricted to this setting.

Recently, table analysis and recognition has received a lot of attention in the DIAR
community. For instance, in the last International Conference on Document Anal-
ysis and Recognition (ICDAR)3 held in Sydney, which is the flagship conference of
this community, a competition was proposed related to this topic4 [87]. Moreover,
one oral session was exclusively devoted to table analysis besides several works
presented as posters.

In this chapter, we propose a graph message passing approach for the detection
and interpretation of tabular structures. Due to their representational power,
graphs are suitable models for tabular layouts. On the one hand, graph nodes
represent segmented entities, i.e. isolated words, groups of words or symbols. On
the other hand, graph edges are inferred in terms of visibility relations. Figure 9.2
illustrates a possible representation scheme of a document in terms of a visibility
graph. When a table is present in the document, due to the repetitivity principle,
its corresponding graph can be decomposed into a set of repeated and connected

3http://icdar2019.org/
4Available at http://sac.founderit.com/index.html

127

http://icdar2019.org/
http://sac.founderit.com/index.html


9. TABLE DETECTION IN INVOICE DOCUMENTS

Figure 9.2: Graph representation of an invoice (left). Graph convolution idea
(middle). Similar embeddings in table nodes after convolutions (right).

graphlets, i.e. small induced subgraphs. Thus, the detection of tables is formulated
in terms of a frequent graphlet discovery algorithm. Since these local structures
have a high variability, we propose to make use of a supervised learning framework.
Therefore, the proposed system is able to train with a priori knowledge about the
graphlets that correspond to table parts. In particular, graph neural networks
offer a solid foundation to achieve this objective. These models are able to learn
a graph node embedding which encodes the context of the node as it is illustrated
in Figure 9.2. A GNN layer embeds into a node a combination of the information
of the neighboring nodes and edges. Then, after each layer, structurally similar
nodes tend to receive a “similar” encoding. In addition, our method exploits the
belief propagation algorithms to add consensus at the GNN predictions for nodes
and edges. Finally, we define the table detection task as a node clustering problem.

In summary, this chapter has several contributions. Firstly, we introduce a GNN
model for tabular layout detection in administrative documents based on the clas-
sification of graph nodes and edges which is not constrained to a rigid tabular
layout in terms of single rows, columns or presence of rule lines. Secondly, belief
propagation has been proposed as a post-process to the GNN prediction in order
to enforce consensus between node and edge prediction. Moreover, the proposed
model is language independent, i.e. although an OCR is used as pre-processing,
only character type attributes are considered, but not the transcription of the
OCR. This has the side advantage that privacy is preserved if required. As far
as we know, this is the first approach not considering the content information for
table detection.

Even though processing administrative documents is of key importance for the
industry, publicly available data is scarce due to data privacy issues. Therefore, a

128



9.2. Related Work on Table Detection and Recognition

dataset5 consisting of 518 invoice pages from RVL-CDIP [104] dataset augmented
with ground truth for table detection and layout analysis has been created and
publicly released. Note that this dataset is provided for the use case we are dealing
in this work, therefore, we provide the bounding box information of the OCR
entities.

The rest of the chapter is organized as follows. Section 9.2 reviews the state-
of-the-art in table detection and recognition. Section 9.3 describes the system
architecture. Afterwards, Section 9.4 evaluates our approach on several datasets.
Finally, section 9.5 draws conclusions and outlines future research directions.

9.2 Related Work on Table Detection and Recog-
nition

Table detection is the first step towards a table analysis and recognition method-
ology. We can classify these approaches according to the type of the input docu-
ments, i.e. spreadsheets or textual documents. Here we focus on the latter which
is more challenging due to the lack of explicit row and column information in most
of the cases.

Table detection and recognition in unconstrained documents is considered a chal-
lenging task and has recently received significant attention within the commu-
nity [47, 94, 118, 124, 144, 172, 197]. Available OCR systems only provide textual
information without considering the actual tabular structures that exist in a doc-
ument. However, recognizing tabular structures is crucial for getting a contextual
meaning of the recognized textual information, which acted as the main motiva-
tion behind this research line. Early works on this topic were mostly bottom-up
in nature [40, 119, 120, 226], and they often start by detecting words or parallel
lines following some heuristic to group homogeneous elements to detect tabular
components (i.e. rows and columns), and hence, tables in a document. As a
consequence, most of the methods do not work well on multi-column document
images due to the simplifying assumptions [198]. Later, Ghanmi and Belaïd [92]
proposed to use a Conditional Random Field (CRF) to localize tabular compo-
nents in unconstrained handwritten documents.

The recent developments on table detection are focused on the current advances
of deep learning techniques. Among them, Gilani et al. [94] proposed a variant
of region proposal network where they feed pre-processed document images for
detecting tables. A similar approach based on a region proposal network is also
proposed in DeepDeSRT [197] for detecting tables, they further extended it to rows
and column detection. In [172], Rashid et al. used a pre-trained neural network
model to distinguish whether a word belongs to a table or not, and depending
on the outcome applied some post-processing techniques for detecting tables. A

5Available at https://zenodo.org/record/3257319

129

https://zenodo.org/record/3257319


9. TABLE DETECTION IN INVOICE DOCUMENTS

saliency based fully connected neural network performing multi-scale reasoning
on visual cues followed by a fully connected CRF for localizing tables and charts
is proposed by Kavasdis et al. [118]. In [47], Clinchant et al. developed two
graph-based methods and compared them for the table detection task, where the
first method relies on graph Conditional Random Fields (gCRF) [131], while the
second method is based on Graph Convolutional Networks (GCN) [123]. At the
same time, Koci et al. [124] proposed another graph-based method, where instead
of a GCN, they used a remove and conquer algorithm for detecting tables. Later,
Lohani et al. [144] used a similar GCN-based technique for recognizing different
fields in an invoice.

Very recently, Paliwal et al. [165] proposed a CNN architecture for learning fea-
tures able to perform table detection and column prediction simultaneously. Also,
some very recent works have focused on the decomposition of the table structure
in its grid patterns and cells [171, 213].

9.3 Table Detection Framework

Tables are complex document entities composed of different elements (headers,
rows, columns, etc.). These elements are distributed on document pages following
repetitive structures. When dealing with structured data, we propose to use the
high representation power of graphs to discover these repetitive patterns charac-
terizing the tabular structure. However, this repetitive structures are not consis-
tent among different documents and require some a priori knowledge to be able
to identify them properly as tables. With the aim of obtaining these knowledge
from examples, data driven techniques such as deep learning provide an efficient
framework to learn the key substructures to deal with these complex documents.

Considering a document graph whose nodes are entities such as words or symbols
and the edges represent their spatial relationships, in this work, we propose a GNN
architecture, which is trained in a supervised manner. Therefore, we know which
is the corresponding class of each node, in terms of its semantic region (header,
address, table, etc.), as well as if an edge is connecting two entities of the same
region, i.e. the two connected nodes belong to the same semantic region. Thus,
we formulate the problem of table detection as a classification problem by learning
how entities are related. In this setting, cross entropy is the proposed objective
function which is optimized by the Adam optimizer [122] with weight decay for
parameter estimation. Once both nodes and edges have been classified, a group-
ing algorithm is applied. With this aim, we implemented the belief propagation
algorithm [241] as a non-learnable approach which combines nodes and edges pre-
dictions for the sake of avoiding inconsistencies from both sources of information.
Our final goal is to decide which edges connect different semantic regions and,
therefore, can be removed from the graph in order to isolate table regions (con-
nected subgraphs). Hence, once the corresponding edges have been removed, the

130



9.3. Table Detection Framework

table detection problem, is reformulated in terms of finding connected components
whose nodes are classified, in average, as tables. Figure 9.3 shows the outline of
the whole table detection method.

Figure 9.3: Outline of the proposed table detection method. (i) the visibility
graph is constructed from the original invoice image. Afterwards, the successive
modules are applied to the obtained graph: (ii) a GNN-based node and edge
classifier; (iii) the belief propagation (BP) algorithm to add consensus between
the corresponding node and edge predictions and; (iv) a final node grouping to
determine the bounding box of the predicted table.

9.3.1 Graph-based Representation of Invoice Documents

In this subsection, we describe how we obtain a graph-based representation given
an administrative document image. It is during this stage that the document im-
age containing possible sensitive contents is anonymized. Given an administrative
document image, we firstly segment the physical layout detecting graphical and
textual entities. This is done by applying an off-the-shelf OCR. On the one hand,
bounding boxes of segmented textual and graphical entities are obtained, on the
other hand, textual attributes (numeric, alphabet or symbol) are associated to the
entities. At this point, we must remark that even though the OCR provides the
recognized text, this is not used in our setting in order to guarantee the anonymity
of the data from this point on. Therefore, from an industrial perspective, the doc-
ument is treated in terms of its content in the client internal network. Afterwards,
the table detection service, allocated in the cloud, will not require that sensitive
information to perform the detection.

Thus, given a document, we represent each detected entity (words, symbols or
numbers) with the available information whereas keeping the anonymity of the
document. In this case, each entity corresponds to a 7-dimensional vector contain-
ing the bounding box position in terms of (x,y)-coordinates, width and height, and
a histogram which counts the number of numeric, alphabet or symbol elements.
This encoded information is the one that will be used for the table detection, and
the only one required for our system. Then, from this set of entities, we generate

131



9. TABLE DETECTION IN INVOICE DOCUMENTS

(a) (b) (c) (d)

Figure 9.4: Example of several graph representations for administrative docu-
ments. (a) Invoice taken from the CON-ANONYM dataset; (b) modern document
belonging to the cTDaR table detection competition; (c-d) invoices obtained from
the RVL-CDIP dataset.

a visibility graph, sometimes referred in the literature as line-of-sight graph [148],
in order to represent the structural information of the document.

Let g = (V,E, µ, ν) be such a visibility graph. The set of nodes V corresponds to the
detected entities of the document. The set of edges E represents visibility relations
between nodes. Two entities are connected with an edge if and only if the bounding
boxes are vertically or horizontally visible, i.e. a straight horizontal or vertical
line can be traced between the bounding box of two entities without crossing any
other. It is enough to take these two directions to check the visibility since it
follows the way which tables are usually organized in documents. Finally, long
edges covering more than a quarter of the page height are discarded. µ and ν are
the labeling functions for nodes and edges respectively. As explained, node labels
are a 7-dimensional vector and the edge labels are the length and angle between
the center of the bounding boxes. The angle has been encoded according to its
sine and cosine. Thus, the angles makes our visibility graph directed. Figure 9.4
draws the visibility graphs of the documents introduced in Figure 9.1.

9.3.2 The GNN Architecture

Given the generated graph, we propose to make use of a graph neural network
architecture ϕ(·) as learning paradigm. We propose to solve the table detection
problem as a graph clustering framework where the network should be able to
find the group of nodes that compound a table. Figure 9.5 illustrates the training
setting of the proposed GNN architecture, once the document has been processed
and the graph has been constructed.

In our setting, both the embedding layers as well as the final multi-layer perceptron
(MLP) have been set to single fully-connected layers.

132



9.3. Table Detection Framework

Figure 9.5: Overview of the proposed GNN architecture for table detection.
Input: visibility graph of document entities. Output: each entity classified as
well as its pairwise relationship with other entities defining whether they belong
or not to the same semantic region. Our framework is composed of an embedding
layer for both nodes and edge features, K graph neural network layers and 2
classifiers for nodes and edges respectively.

Similarly to the previous chapter, we have evaluated two different GNN layers as
the core of the proposed architecture.

GAT-based layer: This layer uses the Graph Attention Networks (GAT) [217]
as they provide an anisotropic update scheme by means of its attention weights.
A detailed explanation of this layer can be found in Section 7.3.

GRU-based layer: It relies on the scheme proposed by Gilmer et al. [95] as
an improvement of the Gated Graph Neural Networks (GG-NN) introduced by
Li et al. [139]. GRU-based update functions, have been mentioned in some works
to report better results [138]. The main difference regarding the model introduced
in the previous chapter is that now, we make use of edge update layers in order
to learn the pairwise information between the entities across our node updates.
These layers take advantage of the edge hidden state and the corresponding nodes
information. The proposed edge update layer is formally defined as

e(k+1)
vw = MLP([e(k)

vw , h
(k)
v , h(k)

w ]), (9.1)

where [·, ·] stands for the concatenation operation and h(k)
v and h(k)

w are the hidden
state of the source and destination nodes respectively. Observe that this definition
depends on the edge direction. In our case, initially we already have a bidirected
graph as we consider the angle between entities as a relative positional encoding.
Thus, we propose to update the edges hidden state at each message passing layer.
This is motivated by the fact that we use the edge information explicitly in the
update function.

In both GNN architectures, the edge layer defined in Equation 9.1 is used to
compute the final edge features e(K)

vw considering h(K)
v and h(K)

w . Therefore, in the
GAT-based model, the structural information is encoded at node level.

133



9. TABLE DETECTION IN INVOICE DOCUMENTS

We denote the final node and edge prediction as pv and pe respectively. For the
edges these predictions are defined as pe = {p0

e, p
1
e, p

2
e} where p0

e is the probability
that the edge is contained inside a semantic region; p1

e identifies edges relating
two different semantic regions and classes; and p2

e identifies edges connecting two
different semantic regions but representing the same class, for instance, connecting
two distinct tables. Note that p0

e + p2
e is the probability of an edge connecting

different semantic regions.

9.3.3 Learning Objectives

We propose to combine two complementary learning objectives according to both
outputs depicted at the prediction layer in Figure 9.5. On the one hand, we use a
node classification loss Lnodes which is able to exploit the local graph regularities
to identify to which semantic region belongs a node. On the other hand, we use
the pairwise information Ledges, where edges are classified as connecting nodes
belonging to the same semantic region or not. To help in the learning process,
we have additionally divided the second case in order to distinguish two nodes,
which are part of different region but belong to the same class. This division gives
more importance to properly classify these edges that otherwise, are drivers of
segmentation errors in the following steps.

Observe that, in this setting, nodes are trained as a multi-class classification prob-
lem. Therefore, different semantic regions besides the table category are con-
sidered. However, with the current information, which intentionally neglects the
textual content for privacy regulations of the service provider, we aim at providing
an extra contextual information for table detection rather than properly detecting
these unstructured regions. Thus, our model benefits of learning some region-wise
relations. For instance, a table usually appears below the address and above the
footer for the page.

We propose a cross entropy loss for both, nodes and edges. Therefore, our objective
function for nodes is described as

Lnodes(x, class) = − log

(
exp(x[class])∑
j exp(x[j])

)
, (9.2)

where x are the the scores for each class. Similarly, the loss for the edges Ledges is
defined by the same equation.

Additionally, we have weighted the loss function to make each class to contribute
equally to the final loss. Notice that the weighting factor is required to balance the
provided information, specially for the graph edges where the problem becomes
extremely unbalanced. Thus, the final loss is defined as

L = Lnodes + Ledges. (9.3)

134



9.3. Table Detection Framework

9.3.4 Table Detection

Taking advantage of the belief propagation (BP) algorithm, we propagate the
nodes prediction in order to marginalize the probability of cutting a particular
edge. Therefore, the edge and node update stages of the belief propagation are
considered to add consensus between node and edge classification. Let us consider
the set states defined by Y = {0, 1}, where 0 and 1 define whether an edge should
be cut or not. Therefore, considering a particular edge e = (vsrc, vdst) and its
source vsrc and destination vdst nodes we predict the cut probability py = [P (Y =
0|e, vsrc, vdst), P (Y = 1|e, vsrc, vdst)]

t. Remember that edges are classified between
three different classes, pe = {p0

e, p
1
e, p

2
e} In this setting, we define the BP factor as

φ = [φ0
e, φ

1
e] ∈MN×N×2 where, N is the number of classes at each dataset, and

φ0
e =

p
0
e · · · 0
...

. . .
...

0 · · · p0
e

 , φ1
e =

p
2
e · · · p1

e
...

. . .
...

p1
e · · · p2

e

 . (9.4)

Thus, at each iteration of the belief propagation algorithm updates the edge states
probabilities py according to

P (Y = 0|e, vsrc, vdst) = ptvsrcφ
0
epvdst ,

P (Y = 1|e, vsrc, vdst) = ptvsrcφ
1
epvdst .

(9.5)

Similarly, the node predictions are also updated according to the edge state prob-
ability py. In this case, each neighboring node of vdst sends a message formally
defined as

mvsrc→vdst
= ptvsrcφ

t
epy, (9.6)

which, following the belief propagation algorithm, is later aggregated as the prod-
uct of messages followed by a normalization. Note that the factor φ is transposed
to meet the size of the edge state probabilities py. Finally, given these probabilities,
we are able to cut these connections that connect entities belonging to different
semantic regions. Algorithm 9.1 provides an overview of the belief propagation
algorithm.

Once the edges have been removed, each independent connected component is
studied. For all of them, its node prediction are averaged in order to obtain the
predicted class of the semantic region.

135



9. TABLE DETECTION IN INVOICE DOCUMENTS

Algorithm 9.1 Belief propagation algorithm to add consensus between node and
edge predictions.
Input: Input data g ∈ G; trained GNN ϕ, belief propagation iterations T .
Output: Edge state probabilities py = {py(e)}e∈E .
1: g′ = (V ′, E′)← ϕ(g), where V ′ = {pv}v∈V and E′ = {pe}e∈E
2: Φ = {φe}e∈E ← Eq. 9.4
3: repeat
4: Update probabilities py (Eq. 9.5)
5: Normalize py
6: Update V ′ according to

∏
mvsrc→vdst

(Eq. 9.6)
7: Normalize V’
8: until Max belief propagation iterations T

9.4 Experimental Validation

This section carefully evaluates the proposed model on three different databases
containing documents from different typologies. Moreover, we present a study
regarding the limitation of a completely structural approach on anonymized data.

9.4.1 Datasets

Three datasets have been used for the evaluation of the proposed table detection
framework. Even though the evaluated task is the same, the typology of the
documents presents an important variability. Therefore, they are useful to evaluate
our method in several use cases.

CON-ANONYM: This is a particular dataset of 960 documents which has been
used as part of an industrial collaboration. Therefore, it is only available for the
internal use in the omni:us company and it cannot be made publicly available as
it contains sensitive contents. The documents are annotated with the following 8
region labels claim, car, cost, supplier, insured, mixed, other and table.

RVL-CDIP: The original dataset proposed by Harley et al. [104] was designed
for the evaluation of CNNs for the task of document image classification and
retrieval. It contains 400, 000 grayscale images, which are divided in 16 classes
with 25, 000 images per class. We have made use of a subset of these documents
for the evaluation of our table detection method. We selected 518 images from
the invoice class, which have been annotated with the following 6 regions labels
supplier, other, table, receiver, invoice_info and total.

cTDaR: Table detection and recognition has become a fundamental step for any
information retrieval technique working on structured and semi-structured docu-
ments. The ICDAR 2019 Competition on Table Detection and Recognition (cT-

136



9.4. Experimental Validation

DaR)6 [87] is one of the many research events that have recently raised attention
on the table analysis problem. This competition is divided into two tracks ac-
cording to table detection (Track A) or table recognition (Track B) where the cell
structure of the table should be provided. Moreover, they provide two datasets
according to modern and archival datasets.

In this chapter, we have utilized the modern dataset as it contains data closer to
the proposed use case of invoices. Moreover, due to the anonymization step, we
only compare our method for the task defined for the track A as the lack of visual
cues makes the recognition step extremely challenging.

For the sake of keeping anonymity, we apply the ABBYY OCR7 on the three
datasets for extracting the text and encode it into a sequence of attribute types.
For example, ‘NNS’ would encode ‘24$’ and ‘AAAAAA’ would encode ‘Google’,
where ‘A’, ‘N’ and ‘S’ respectively denote if the type is alphabetical, numeric
or symbol. In addition to the attribute type, we also keep the bounding boxes
of each word that appears in these documents. The ABBYY OCR has been
selected as it is the framework used by our industrial partner. Note that the
OCR parameters have not been tuned for this specific data. Table 9.1 shows a
comparison of the datasets. Note that in CON-ANONYM and RVL-CDIP there
are documents containing pages without tables.

Table 9.1: Summary of the datasets statistics as well as the proposed division in
train, validation and test sets.

CON-ANONYM RVL-CDIP cTDaR

Total # documents
(tr, va, te)

950
(665, 95, 195)

518
(362, 52, 104)

840
(540, 60, 240)

Total # pages 1252 518 840
Total # tables 1202 485 1423
Total # classes 8 6 2
Avg. # nodes/page 245.31 123.80 402.17
Avg. # edges/page 755.43 327.42 1481.76

More details on these datasets are provided in Appendix A.

9.4.2 Experimental Protocol

Our proposed table detection method strongly relies on the proxy tasks of node
and edge classification. Therefore, we adopted the accuracy measure to validate
these tasks.

Following the evaluation schema introduced for object detection, in this work we
6Available at http://sac.founderit.com/
7https://www.abbyy.com

137

http://sac.founderit.com/
https://www.abbyy.com


9. TABLE DETECTION IN INVOICE DOCUMENTS

have considered that a table is properly detected if its Intersection over Union
(IoU) is over a threshold. IoU is formally defined as

IoU =
area(GTbb ∩DTbb)

area(GTbb ∪DTbb)
, (9.7)

where GTbb and DTbb are the table bounding boxes from the ground-truth and
detection respectively. We denote IoU@t to specify the used threshold t. If it
is not specified we will consider a table to be properly detected in case of t =
0.5, i.e. IoU@0.5.

Based on that, we have evaluate the table detection by means of the traditional
measures used in information retrieval, the precision and recall. On the one hand,
the precision evaluates the fraction of tables that have been actually detected. On
the other hand, the recall is used to evaluate the fraction of detections that were
actually tables. These are formally defined as

Precision =
|ret ∩ rel|
|ret|

,

Recall =
| ret∩rel|
|rel|

,

where ret are the set of predicted tables and rel stands for the set of relevant
elements i.e. ground-truth tables. Moreover, we use the F1 score to asses the
overall performance of our system. This is formally defined as the harmonic mean
of recall and precision values, thus

F1 = 2
PrecisionRecall

Precision + Recall
.

F1 score was also adopted by the cTDaR competition [87] to guide their final
ranking.

9.4.3 Ablation Study

As introduced in Section 9.3 the proposed architecture depends on a set of param-
eters that we evaluated in the following lines. Let us first consider only one belief
propagation iteration. We consider the GNN layer used, in this case GAT-based
and GRU-based models. In addition, the number of layers and hidden size are
also taken into account. Table 9.2 provides this study in terms of the average F1

score of three different trains of our system. For these experiments, a table is con-
sidered properly detected with an IoU of 0.5 (IoU@0.5). Note that for RVL-CDIP
and CON-ANONYM datasets, for different runs we randomly change the train,
validation and test partition. In the case of cTDaR, the test partition remains the
same for all the cases.

138



9.4. Experimental Validation

Table 9.2: Study on the GNN model and parameters. We provide the mean and
standard deviation of 5 trains of the different models, number of layers (K) and
hidden size (HS). In bold, the best performance per each model in %.

Model K HS RVL-CDIP CON-ANONYM cTDaR

F1 score ± F1 score ± F1 score ±
GAT-based 3 32 55.90 1.557 85.16 3.997 59.64 3.422

64 49.38 1.840 86.14 2.231 61.52 2.007
128 51.04 4.913 86.76 1.471 60.26 1.343

4 32 52.96 3.688 86.14 2.187 59.20 1.560
64 52.82 4.752 84.92 1.475 62.14 1.374
128 54.56 5.261 87.54 3.173 60.08 2.315

5 32 52.98 4.418 85.66 2.101 61.00 2.255
64 55.44 2.411 88.86 1.874 61.22 1.731
128 51.98 4.619 88.22 1.946 60.62 2.397

GRU-based 3 32 50.96 5.743 81.74 2.557 64.38 2.329
64 51.68 6.149 84.12 1.988 65.84 1.767
128 51.96 7.062 84.24 2.746 65.10 2.277

4 32 52.40 4.840 86.86 2.147 69.02 1.988
64 57.22 3.431 85.84 2.367 65.54 2.798
128 51.00 4.740 85.80 2.570 64.92 3.220

5 32 54.80 5.095 84.44 4.482 70.10 0.860
64 55.34 4.786 88.14 1.626 66.98 3.558
128 56.32 3.636 83.60 2.266 67.72 0.789

This table demonstrates that the GRU-based architecture outperforms the GAT-
based version across the three datasets. This is likely to happen because of the
use of the edge information along the different layers of the proposed model in the
case of the GRU model. Additionally, increasing the number of layers helps in the
detection of tables as it entails an increase of the receptive field allowing a better
contextual information. Thus, nodes and edges are able to be better classified.
However, this increase in terms of the number of layers should be carefully done
reminding the typical problem of over-smoothing in GNNs. Regarding the hidden
size, we conclude that increasing it too much is prejudicial to the network as it
leads to over-fitting.

From the datasets perspective, CON-ANONYM is the one that better fits into the
specification of the industrial use case and the one obtaining better performance.
Moreover, RVL-CDIP contains noisier data which makes the detection task more
challenging. Finally, the cTDaR dataset shows the importance of the visual cues.
For example, some documents contain tables organized in blocks that at the same

139



9. TABLE DETECTION IN INVOICE DOCUMENTS

Table 9.3: Table detection evaluation for the best models from Table 9.2 com-
pared to our previous GNN model.

Task RVL-CDIP CON-ANONYM cTDaR

F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall

GNN [175] 30.80 25.20 39.60 73.70 78.40 69.50 - - -

GAT-based 55.90 55.00 56.92 88.86 90.84 86.98 62.14 65.04 59.56
GRU-based 57.22 57.12 57.50 88.14 90.24 86.18 70.10 71.10 69.14

time can be considered as tabular arrangements. Section 9.4.4 discusses this prob-
lems in more detail.

From now on, we will consider the best models for each dataset according to their
F1 score which are marked in bold in the table mentioned above.

Table 9.3 provides a comparison in terms of F1 score, precision and recall against
our previous work [175]. With the improvement introduced in this chapter, we
are able to improve that seminal work in both datasets, RVL-CDIP and CON-
ANONYM, by a big margin. As we have already explained, our methodology
strongly relies on the ability to classify nodes and edges to its corresponding class.

Table 9.4 provides an evaluation on these proxy tasks in terms of node classification
accuracy, recall on table nodes and edge classification accuracy. Remember that
for RVL-CDIP and CON-ANONYM several classes are taken into account for
node classification. Moreover, the edge accuracy of our previous model [175] is not
directly comparable as it does not consider the same three different classes.

Table 9.4: Node and edge classification performance as well as table node recall
for the best models from Table 9.2.

Task RVL-CDIP CON-ANONYM cTDaR

Node Acc. Edge Acc. Recall Node Acc. Edge Acc. Recall Node Acc. Edge Acc. Recall

GNN [175] 62.30 84.00 - 84.50 93.40 - - - -

GAT-based 68.06 85.62 75.40 83.42 89.22 93.90 89.58 89.50 86.24
GRU-based 67.06 83.02 76.74 84.74 89.42 93.06 92.20 91.60 87.74

In comparison, the accuracies at node level are rather similar, however, thanks to
the new edge information and the consensus step inspired on the belief propagation,
we are able to improve our final detection score.

Finally, we have evaluated several iterations of the belief propagation algorithm
as our consensus layer to perform the final node grouping. Figure 9.6 shows the
evolution of the F1 score for our best model in cTDaR dataset while increasing
the number of belief propagation iterations. Observe that 0 corresponds to the
direct prediction of the GNN. We have experimentally observed that increasing
the number of layers is able to slightly improve the performance in these pages

140



9.4. Experimental Validation

F1
-s
co
re

40

50

60

70

IOU@0.5 IoU@0.6 IoU@0.7 IoU@0.8 IoU@0.9

0

1

2

3

4

Figure 9.6: Evolution of the F1 score using several iterations of the belief prop-
agation and different IoU thresholds.

containing just one table. However, for two or more tables the performance de-
creases. From our experiments we conclude that the best option is achieved by
incorporating just one iteration of the belief propagation algorithm. Even though
the performance at IoU@0.5 is very similar, the belief propagation layer obtains
more precise results. This is observed while increasing the IoU threshold.

9.4.4 Structural Constraints

As previously stated in the introduction, table detection on undisclosed documents
is a challenging task, not only because in administrative documents the classic table
structure is sometimes lost, but also, the visual cues exploited by the state-of-the-
art table detection algorithms are completely lost. These cues include attributes
such as rules, colors, or text emphasis styles (bold, italics, underline, etc.).

Figure 9.7 shows the table detection ground-truth of the same documents as Fig-
ure 9.1. Observe that this is not a straightforward task even for humans. For
instance, Figure 9.7(b) presents several tables that at a high level might be per-
ceived as a unique table or at least a set of tables in a tabular arrangement. In this
particular case, tables are easily spotted using the rule lines and distinct colors.

Moreover, if we compare our results with the ones obtained by the participants
in cTDaR competition8 we get an idea of the importance of the visual cues in
this task. Note that these results are not directly comparable to our proposed
approach as we do not aim for an accurate segmentation rather than an adjusted
bounding box to the detected nodes. Indeed, since we are not using the visual
information, it is not possible to include elements such as the table lines into our

8Available at http://sac.founderit.com/results.html

141

http://sac.founderit.com/results.html


9. TABLE DETECTION IN INVOICE DOCUMENTS

(a)
(b
)

(c)
(d
)

F
igu

re
9.7:

E
xam

ple
of

ground-truth
table

regions
on

the
original

docum
ents

(first
row

)
and

the
predicted

ones
on

the
anonym

ized
docum

ents
(second

row
).

142



9.5. Conclusions

Table 9.5: Comparison against the top-3 approaches from the cTDaR competi-
tion in terms of F1 score at different IoU thresholds.

Team IoU@0.5 IoU@0.6 IoU@0.7 IoU@0.8 IoU@0.9

TableRadar - 97.16 96.41 95.27 91.12
NLPR-PAL - 96.24 95.49 93.61 89.47
Lenovo Ocean - 94.07 93.69 91.40 86.04

GRU-based 70.10 67.40 63.84 58.02 47.24

final detection. Table 9.5 shows a comparison against the top-3 approaches from
the cTDaR competition in terms of F1 score. This table provides the results at
different thresholds moving from a coarser segmentation to a fine grained one.

9.5 Conclusions

This chapter has presented, as far as we are concerned, the first table detection
method based purely on structural information without making use of the raw
content of the text. After modeling the underlying structure of the document
as a graph, the table detection is treated as a node classification problem where
local node configurations characterize the table structure. Graph neural networks
provide an adequate framework to discover the local structures and to classify these
nodes belonging to tables. Additionally, we have contributed to the community a
novel dataset derived from the RVL-CDIP invoice data.

From the industrial point of view, an important advantage is that our approach
is able to deal with anonymized data, as it does not use the raw textual contents
of the documents. While most existing works on table detection do not consider
anonymization, which is a big concern for companies when dealing with sensitive
content as in the case of invoices, our method has demonstrated to overcome this
limitation.

Despite demonstrating a good performance for table detection, especially if we
take into account the origin of the documents and the drop of information due
to the anonymization stage, there are still some open challenges that might be
studied in the future. Firstly, the proposed framework relies on a commercial
OCR which is used in the production pipeline of our partner company. Therefore,
it might not be able to recover text blobs in really small cells. Finally, our pipeline
strongly depends on node and edge classification rather than directly train on
region detection which is our final goal.

143





10 | Conclusions

Now it’s closing time, the music’s fading out
Last call for drinks, I’ll have another stout.

– Tom Waits

In this chapter, we summarize the contributions of this dissertation to the pat-
tern recognition and computer vision fields and, in particular, its applications to
document image analysis and recognition problems. We also highlight the main
achievements and limitations of the proposed approaches. Finally, we lead the
reader towards possible new research lines and natural extensions of the proposed
methodologies.

10.1 Summary of the Contributions

In this thesis we have introduced a study on how graphs can be used for several
pattern recognition and computer vision tasks and, in particular, for document
analysis and recognition applications. The mass digitization of document collec-
tions has been promoted worldwide in order to foster their preservation in digital
libraries. Although it has been specially applied to historical collections, digitiza-
tion has become an important part for companies which require to rapidly process
a huge amount of administrative documentation. For example, in the era of the
digital revolution, digital-born documents have become the main communication
channel. However, there are still lots of documents shared in paper, either printed,
completely handwritten or combined, i.e. signed documents or filled forms.

Our starting hypothesis was that document collections have an important struc-
tural component that can be exploited in several methodologies. The main idea,
as introduced in Chapter 1, was to exploit this structural information in doc-
ument collections. Research-wise, we decided to divide this thesis in two main
parts following two separated trends on graph-based representation algorithms.
On the one hand, traditional approaches on graph matching and embeddings have
been presented. On the other hand, the new advances on geometric deep learning
had been taken into account to incorporate deep learning features on two distinct
applications.

145



10. CONCLUSIONS

The contributions presented in this work are enumerated in six points, three of
them corresponding to the first part of this thesis and the other three corresponding
to the second part. Moreover, even though the focus of this thesis is the devel-
opment of DIAR methodologies, some of the contributions are generic algorithms
for graph data. Let us briefly summarize these five contributions:

• Construction of a graph representation: Utilizing graphs as a repre-
sentational scheme for DIAR algorithms involves an expensive handcrafted
process to design a model for describing the structure of images. In Chap-
ter 3, we have demonstrated that a proper graph representation is able to
robustly depict handwritten word images. In particular, we have shown
competitive results when comparing to traditional statistical approaches in
the context of the word spotting task. Therefore, we have validated these
representations as a valid alternative.

• Efficient graph retrieval: Efficiency has traditionally been one of the
main drawbacks when dealing with these graph representations. Specially, in
large-scale scenarios, graphs have been considered to be unrealistic schemes
due to the fact that most of the algorithms to process graph data have, at
least, a quadratic computational complexity. In this dissertation, Chapter 4
and Chapter 5 have proposed two different methodologies to overcome this
limitation. First, an indexation scheme based on the local context of the
nodes has been introduced. Therefore, graph matching has been applied
only to these regions likely to contain the desired information. Second, a
hierarchical graph has been built in order to perform a matching stage on
much smaller graphs. In comparison to the indexation scheme, this second
methodology kept a global consistency of the graph. Both techniques have
been carefully validated on top of a graph edit distance approach.

• Hierarchical graph embedding: As introduced in our review about graph
theory in Chapter 2, graph embeddings have been widely used to encode
structural representations into the Euclidean domain, i.e. one dimensional
data. However, obtaining this vectorial representation entails a loss on the
structural information. In Chapter 6 we have proposed a novel graph em-
bedding technique which exploits the hierarchical graph structure defined in
its previous chapter. This embedding emphasizes the structural nature of
the original graph making use of a stochastic graphlet sampling. Moreover,
we have shown the superiority of our approach not only on document image
analysis and recognition datasets, but we extended our validation by means
of classical pattern recognition data such as molecular graphs.

• Graph metric learning: The new advances on deep learning frameworks
dealing with non-Euclidean data, and in particular graphs, have faded away
previous schemes such as the graph edit distance. In Chapter 8, we have
proposed to take advantage of these traditional approaches, in our case the
Hausdorff edit distance, to guide our learning process. In this chapter, graph

146



10.2. Discussion

neural networks were used to learn, on the one hand, an enriched graph rep-
resentation and, on the other hand, the edit cost operations of the proposed
GED.

• Automatic processing of administrative documents: Nowadays, one
of the main research topics of the DIAR area focuses on the automatic pro-
cessing of administrative documents. In this thesis, we focused on the prob-
lem of table detection as tables are the drivers of the essential information
condensed in a structured text. The main problem is the sensitive data in-
volved in these documents. Thus, public databases are rather scarce and
old fashioned as real documents are confidential and cannot be published.
Therefore, these documentation is usually treated internally in each corpo-
ration. Hence, we put our efforts on a model which does not rely on the
textual content. In addition, we released the generated data.

• Applications in a real use case scenario: A side contribution of this
thesis has been a collaboration with a company dealing with the automatic
processing of administrative documents. Therefore, on the one hand, we
have faced real problems according to the needs of the industry and, on the
other hand, we transferred the generated knowledge to the company.

10.2 Discussion

This thesis has made several contributions in image classification, recognition and
retrieval fields using graphs. Although the application domain that has driven our
research is document image analysis and recognition, most of our contributions
are transversal and can be formulated in terms of graph classification, recognition
and retrieval. For example, Chapter 6, introduces a graph embedding which has
proved to be state-of-the-art not only for graph-based image classification but also
in molecular graph datasets.

Even though during this thesis graph-based representations have been used in a
wide range of applications, there are particular cases where they are not the ad-
equate representational framework. For example, starting from Chapter 3, word
spotting has been one of the problems tackled during this research. In this case,
graphs provide a flexible and powerful representation able to depict the struc-
ture of the hand-drawn strokes while preserving the deformations from different
writing styles. Therefore, we are able to formulate this problem in a completely
learning free approach, which, in addition, provides the node correspondence be-
tween words. However, with the advances on deep learning frameworks, CNNs can
easily overcome our performance given a carefully annotated set of training words.
Although in the particular case of historical manuscripts it is not always feasible to
have this requirement, in modern documents we consider CNNs a better solution
to this problem.

147



10. CONCLUSIONS

An important drawback we had to face in this work is the time complexity involved
in any graph based approach. Chapters 4 and 5 have proposed solutions to scale
graph retrieval techniques to large collections of images. In general, traditional
statistical approaches are able to work on reasonably large datasets without any
indexing methodology. Nonetheless, researchers have proposed hashing techniques
to allow these set of approaches to work at real time, a setting where graph-based
representations are unlikely to be used. Thus, in Chapter 6 we tried to bridge
the gap between statistical and graph-based approaches by defining a multi-scale
graph embedding function.

The second part of this dissertation consists of two disjoint approaches which
share the geometric deep learning methodology. We prove how geometric deep
learning is a game changer for the structural pattern recognition community. For
instance, Chapter 8 demonstrates that traditional graph matching approaches can
be combined with graph neural networks in order to obtain an improved matching
methodology. In comparison to other works, we argue that it is not necessary to
learn a graph embedding which will cause a loss on the structural information,
specially, in big graphs. In addition, even though the use cross-graph connections,
as proposed in the GMN [138] approach, increases the performance of the learned
metric, it brings about the time complexity.

Finally, Chapter 9 has presented a work able to detect tables in an anonymized
administrative documents. Although our proposed framework is capable of per-
forming such task, we hypothesize that a full layout analysis system might not
be possible. In the particular case of non-structured document regions, the pro-
posed approach is not able to exploit neither the textual contents nor the visual
cues required for such cases. Hence, in these scenarios, CNN-based approaches,
which are able to make use of the visual information or natural language process-
ing frameworks given the textual content obtained by an OCR, might be a better
choice.

10.3 Open Challenges

Along the thesis we have already stressed some open questions worth considering
as unexplored lines. Moreover, taking into account the novelty of the geometric
deep learning frameworks, we are convinced that there is still a wide variety of
opportunities for improving and advancing our work. Also note that the new
methodologies derived from the geometric deep learning field has opened several
research lines that were not covered in this dissertation.

Traditionally, the generation of graph-based representations from a given image has
been performed using handcrafted algorithms, where expert researchers carefully
designed the whole process. With the emergence of geometric deep learning, as
reviewed in Chapter 3, scene graphs have been proposed as a way to construct
a graph-based representation from a given image. However, in the literature,

148



10.3. Open Challenges

scene graphs are trained from a manually annotated ground-truth based on object
detection and relationship connections. We speculate that by taking advantage of
these techniques, a graph can be constructed in an unsupervised way for such a
task that strongly requires structural information. Therefore, a first open challenge
is to design pure data-driven techniques able to exploit the structure required to
solve a particular task.

Even though in Chapter 8 we have introduced a graph metric learning framework
able to learn, on the one hand, similarities between graphs and, on the other
hand, its corresponding node assignments in terms of substitutions, insertions
and deletions, our method has still some limitations. The main one is the lack
of a global graph coherence at the node to node assignment. Following classical
approximations of the graph edit distance, in order to avoid a huge time complexity,
specially in big graphs, we have only considered the local context of the nodes at
matching time. Therefore, an interesting future research direction is to study how
to extend the proposed methodology to incorporate a global consistency on the
node to node assignments.

With regard to Chapter 9, which has presented a work able to detect tables in
anonymized administrative documents, the method’s main limitation is the loss
of information during the data anonymization stage. At that time, several infor-
mation regarding visual cues, i.e. font, color, rule lines, etc. can be extremely
helpful in combination with our structural methodology. As a matter of fact, an
open challenge is to develop techniques able to combine structural as well as visual
information on layout analysis techniques.

Although it is not directly related to the main concern of this thesis, which is to
automatic process images from the structural perspective, a topic worth exploring
is to incorporate the use of knowledge graphs. Note that knowledge graphs can be
treated using similar techniques as the ones introduced in this dissertation, even
though its encoded information is intrinsically different.

Finally, deep learning is experiencing an evolution from the point of view of the
learning strategies. The huge amount of data required for the supervision of new
models causes a huge bottleneck dealing with new problems. Therefore, self-
supervision and reinforcement learning strategies are gaining popularity among
the machine learning community. We hypothesize that similar approaches will be
able to deal properly with graph data. As a matter of fact, we performed some
tests on the reinforcement learning setting in order to combine, using its pairwise
relationships, several blocks or shapes. Reinforcement learning has proved to lead
to meaningful results taking into account a very restricted set of shapes, however,
moving to a large scale setting has proved to be very unstable.

149





Appendix

Along the chapters of this dissertation, we have con-
ducted several experiments to evaluate the perfor-
mance of our proposed approaches. Therefore, several
evaluation metrics and benchmarks have been used.
Here, we present an appendix detailing carefully the
benchmarks that have been used to asses this perfor-
mance.





A | Datasets

It is a capital mistake to theorize before one
has data. Insensibly one begins to twist facts
to suit theories, instead of theories to suit
facts.

– Sir Arthur Conan Doyle

Along this thesis, several databases have been used to evaluate the performance
of the proposed frameworks. Although this thesis focuses on DIAR problems, in
order to test the generality of the proposed approaches, we have also experimented
in other datasets developed in Pattern Recognition. In particular, apart from the
DIAR datasets, we make use of computer vision datasets for image classifica-
tion and molecular graph datasets for graph classification. Moreover, the selected
datasets are able to evaluate different settings such as classification, retrieval or
detection.

A.1 Barcelona Historical Handwritten Marriages
Database

The Barcelona Historical Handwritten Marriages Database (BH2M) presented
in [76] consists of 174 pages from the 17th century. The pages are extracted from
one volume of the Marriage Register Books from the Archive of the Barcelona
Cathedral. This collection is composed of 244 books with information of approx-
imately 600,000 unions celebrated in 250 parishes between 1451 and 1905. Fig-
ure A.1 shows two pages from different volumes of the Marriage Register Books.
Note that Figure A.1(a) belongs to the volume used to create the dataset BH2M.

The BH2M dataset contains ground truth at several levels. Thus, it provides a
challenging set of collections for several DIAR problems:

• Layout structure: The layout information is provided at text block, para-
graph, line and word levels. Therefore, this dataset is appropriate for eval-
uating layout analysis methodologies.

153



A. DATASETS

(a) (b)

Figure A.1: Examples of pages form different volumes from the Marriage Register
Books from the Archive of the Barcelona Cathedral.

• Content analysis: All the handwritten text has been carefully transcribed.
This dataset has been widely used for word spotting and handwritten text
recognition (at both word or line level) tasks.

• Semantic tasks: In addition, thanks to the nature of this collection, se-
mantic information has been provided such as names, dates or places.

In this thesis, this dataset has been used for the particular task of word spotting.
The use of word spotting in this collection allows to search names, places, occupa-
tions, etc. The dataset is divided in 3 sets, train, validation and test with 100, 34
and 40 page images respectively. The ground truth consists of the bounding box
and transcription of each one of the words. Together with the dataset, the authors
provide a total of 5,170 query words, cropped from these manuscripts. Figure A.2
illustrates two word examples from this dataset.

A.2 IAM Graph Database Repository

The IAM graph database repository1 [180] provides several graphs generated from
different types of data. Thus, it is a multidisciplinary dataset which allows re-

1Available at http://www.fki.inf.unibe.ch/databases/iam-graph-database

154

http://www.fki.inf.unibe.ch/databases/iam-graph-database


A.2. IAM Graph Database Repository

(a) Berga (b) Casanovas

Figure A.2: Examples of cropped words from the BH2M dataset with their
transcription.

searchers to evaluate their performance independently of the application. There-
fore, the dataset is divided in nine datasets named, Letter (3 versions), Digit,
GREC, Fingerprint, COIL (2 versions), Webpages, AIDS, Mutagenicity and Pro-
tein.

Among these datasets, in this dissertation we considered three of them viz. AIDS,
GREC and COIL-DEL.

• AIDS graphs: It consists of 2000 graphs representing molecular compounds
which are constructed from the AIDS Antiviral Screen Database of Active
Compounds2. This dataset consists of two classes, viz. , active (400 elements)
and inactive (1600 elements), which respectively represent molecules with
possible activity against HIV.

• GREC graphs: It consists of 1100 graphs representing 22 different classes
(characterizing architectural and electronic symbols) with 50 instances per
class; these instances have different noise levels.

• COIL-DEL graphs: It includes 3900 graphs belonging to 100 different
classes with 39 instances per class. It has been created as the graph repre-
sentation of a subset of the Columbia Object Image Library [160] reviewed
in the following section.

Table A.1: Details of the AIDS, GREC, COIL-DEL and HistoGraph datasets.

Datasets Subsets # Graphs # Classes Avg. |V | Avg. |E| Node labels

AIDS − 2000 (250, 250, 1500) 2 15.7 16.2 Chemical symbol
GREC − 1100 (286, 286, 528) 22 (50 each) 11.5 11.9 Type, (x,y) position
COIL-DEL − 3900 (2400, 500, 1000) 100 21.5 54.2 (x,y) position

The IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning [180] presents ten graph sets with different characteristics. Fig-
ure A.3 shows two examples from two classes. These sets come from real problems
that can be faced through graph-based representations.

2See at http://dtp.nci.nih.gov/docs/aids/aids_data.html

155

http://dtp.nci.nih.gov/docs/aids/aids_data.html


A. DATASETS

Figure A.3: Examples of graphs from two classes of the dataset.

(a) (b)

Figure A.4: Examples of the elements in our database. (a) graph representation
of a query; (b) floor plan image where the query should be spotted.

A.3 SESYD Floorplans

The Systems Evaluation SYnthetic Documents3 (SESYD) dataset, created by De-
lalandre et al. [55] is a database of synthetical documents organized in several
categories. In particular, for the purposes of this dissertation, we consider the
floorplans collection which contains 10 different subsets and 16 query symbols.
Figure A.4 shows two example images from the SESYD dataset.

Each one of the subsets contains 100 synthetically generated floorplans created
from the same floorplan template. Then, different model symbols, 16 in total, are
placed in randomly realistic locations, orientations and scales.

In this thesis, we built up a new subset by combining the original subsets. Thus,

3http://mathieu.delalandre.free.fr/projects/sesyd/

156

http://mathieu.delalandre.free.fr/projects/sesyd/


A.4. Object classification datasets

apart from the symbol distortions, we are also taking into account variations on
the floorplan. Our new subset consists of 20 floorplans taken from each subset and
all the query symbols.

This dataset was previously processed by Dutta et al. [63]. They propose a dual
graph representation of both, symbols and floorplans. Following this representa-
tion, dual graphs nodes are labeled with the vector of Hu moments invariants.
Dual nodes represent a path in the vectorized image.

A.4 Object classification datasets

Two datasets designed for object classification have been used during this thesis,

• The Columbia Object Image Library (COIL-100) [160] consists of 100 images
of different objects against a black background. For each object, 72 images
at equally spaced poses, corresponding to different rotations of the object
have been taken.

• Object DataBank (ODBK) [212] is formed by 209 3D objects taken into
account images of 14 different views per each.

For both datasets, graph nodes are extracted using the Harris corner detector [105]
and the edges are generated using the Delaunay triangulation on these nodes. In
both datasets, the final graphs node attributes correspond to each coordinate in the
image whereas the edges are not weighted. Following the experiments reported by
Mousavi et al. [158], 15 and 50 classes, with maximum average number of nodes,
are used. The graphs are divided into three sets, training, validation and test of
360, 75 and 150 images for COIL-100 dataset and 300, 150 and 150 images for
ODBK dataset. Figure A.5 shows some example images from these databases.

A.5 Molecular Graph Datasets

Several bioinformatics datasets have been used in this dissertation, viz. MUTAG,
PTC, PROTEINS, NCI1, NCI109, D&D and MAO. These datasets have been
widely used as benchmark in the literature.

• The MUTAG [53] dataset contains graph representations of 188 chemical
compounds which are either mutagenic aromatic or heteroaromatic nitro
compounds where nodes can have 7 discrete labels.

• The PTC [214] or Predictive Toxicology Challenge dataset consists of 344
chemical compounds known to cause or not cause cancer in rats and mice.
It has 19 discrete node labels.

157



A. DATASETS

(a) (b)

Figure A.5: Example of objects from (a) the COIL-100; and (b) ODBK
databases.

• The PROTEINS [24] dataset contains relations between secondary structure
elements (SSEs) represented by nodes and neighborhood in the amino-acid
sequence or in 3D space by edges. It has 3 discrete labels viz. helix, sheet
or turn.

• The NCI1 and NCI109 [222] come from the National Cancer Institute (NCI)
and are two balanced subsets of chemical compounds screened for their abil-
ity to suppress or inhibit the growth of a panel of human tumor cell lines,
having 37 and 38 discrete node labels respectively.

• The D&D [59] dataset consists of enzymes and non-enzymes proteins struc-
tures, in which their nodes are amino acids.

• The Monoamine Oxydase (MAO) database, taken from GREYC Chemistry
graph dataset collection4, is composed of 68 graphs representing molecules
that either inhibit or not the monoamine oxidase, which is an antidepressant
drug.

Some more details on the proposed bioinformatics molecular datasets are provided
in Table A.2.

A.6 HistoGraph Database

The HistoGraph dataset [207, 208] is a graph database for historical keyword
spotting evaluation5. It consists of different well known manuscripts.

George Washington (GW) [79]: This database is based on handwritten letters
written in English by George Washington and his associates during the American

4Available at https://brunl01.users.greyc.fr/CHEMISTRY/
5Available at http://www.histograph.ch/

158

https://brunl01.users.greyc.fr/CHEMISTRY/
http://www.histograph.ch/


A.6. HistoGraph Database

Table A.2: Details of the molecular graph datasets.

Datasets # Graphs # Classes Avg. |V | Avg. |E| Node labels

MUTAG 188 2 (125 vs. 63) 17.9 39.6 7
PTC 344 2 (192 vs. 152) 25.6 51.9 19
PROTEINS 1113 2 (663 vs. 450) 39.1 145.63 3
NCI1 4110 2 (2057 vs. 2053) 29.9 64.6 37
NCI109 4127 2 (2079 vs. 2048) 29.7 64.3 38
D&D 1178 2 (691 vs 487) 284.3 1431.3 82
MAO 68 2 (30 vs. 38) 18.4 19.6 3

Revolutionary War in 17556. It consists of 20 pages with a total of 4, 894 handwrit-
ten words. Even tough several writers were involved, it presents small variations
in style and only minor signs of degradation.

Parzival (PAR) [79]: This collection consists of 45 handwritten pages written by
the German poet Wolfgang Von Eschenbach in the 13th century. The manuscript
is written in Middle High German with a total of 23, 478 handwritten words.
Similarly to GW, the variations caused by the writing style are low, however,
there are remarkable variations caused by degradation.

Alvermann Konzilsprotokolle (AK) [169]: It consists of German handwritten
minutes of formal meetings held by the central administration of the University
of Greifswald in the period of 1794 to 1797. In total 18, 000 pages were used with
small variations in style and only minor signs of degradation.

Botany (BOT) [169]: It consists of more than 100 different botanical records
made by the government in British India during the period of 1800 to 1850. The
records are written in English and contain certain signs of degradation and es-
pecially fading. The variations in the writing style are noticeable especially with
respect to scaling and intra-word variations.

Figure A.6 provides some examples of pre-processed word images from which the
graphs are created. Observe that the word segmentation of AK and BOT datasets
is imperfect [169]. Moreover, these two datasets do not provide a validation set.
Table A.3 provides an overview of the dataset in terms of number of words.

A.6.1 Graph Construction

One of the objectives of this dataset was to evaluate the performance of different
graph representations generated from the same input data. Therefore, the authors
developed 6 different graph representation paradigms for delineating a single word

6George Washington Papers at the Library of Congress from 1741-1799, Series 2, Letterbook
1, pages 270-279 and 300-309, https://www.loc.gov/collections/george-washington-papers/
about-this-collection/

159

https://www.loc.gov/collections/george-washington-papers/about-this-collection/
https://www.loc.gov/collections/george-washington-papers/about-this-collection/


A. DATASETS

(a) George Washington (GW)

(b) Parzival (PAR)

(c) Alvermann Konzilsprotokolle (AK)

(d) Botany (BOT)

Figure A.6: Pre-processed word examples of the four datasets.

Table A.3: Dataset overview in terms of number of keywords and word images
for training, validating and testing respectively

Dataset Keywords Train Validation Test

GW 105 2,447 1,224 1,224
PAR 1,217 11,468 4,621 6,869
BOT 150 1,684 - 3,380
AK 200 1,849 - 3,734

into a graph. This results in 6 different versions of this dataset. In this section,
we briefly explain how these graphs have been constructed as explained in [207].

• Keypoint: This methodology extracts characteristic points from the skele-
tonized word images. The set of keypoints are based on start, end, and
junction points. Thus, in the final graph representation these points are rep-
resented as nodes and labeled with their corresponding (x, y)-coordinates.
Moreover, between connected points in terms of the skeleton, intermediate
points at equidistant intervals are also converted into nodes. Finally, edges
are created between these nodes connected by a stroke.

• Grid: Firstly, a grid-based segmentation is performed to the binarized word
images. Each cell which contains foreground pixels, is converted into a node
with the corresponding (x, y)-coordinates of the center of mass as a label.

160



A.6. HistoGraph Database
O
ri
gi
n
al

B
in
ar
iz
ed

K
ey
p
oi
nt

G
ri
d
-N

N
A

G
ri
d
-M

S
T

G
ri
d
-D

E
L

P
ro
je
ct
io
n

S
p
li
t

Figure A.7: Overview of the graph representations proposed by Stauffer et al. .
Reprinted from [207].

Moreover, undirected edges are inserted according to one of three edge in-
sertion algorithms, viz. Node Neighborhood Analysis (Grid-NNA), Minimal
Spanning Tree (Grid-MST), or Delaunay Triangulation (Grid-DEL). Note
that only Grid-MST is used for the whole dataset whereas Grid-NNA and
Grid-DEL are only used for the evaluation of the subset for graph classifica-
tion introduced in Section A.6.2.

• Projection: This methodology, rather than a static grid, is based on an
adaptive and threshold-based segmentation of binarized word images. It is
based on the horizontal and vertical projection profiles. Thus, the image is
split at middle of white spaces of the projection profile and then it is further
divided in equidistant intervals. A node is inserted into the graph labeled
with the (x, y)-coordinates of the skeleton point closest to the center of mass
of the cell. Finally, an edge is created if a pair of nodes is connected by a
stroke.

• Split: This methodology iterative segments the binarized word image until
the width and height of all segments are below a certain threshold. Then,
a node is inserted into the graph labeled with the (x, y)-coordinates of the
skeleton point closest to the center of mass of the cell. Finally, following the
same idea as projection, an edge is created if a pair of nodes is connected in
the skeleton.

Figure A.7 illustrate the different graph representations they proposed. For further
details, we point the interested reader to the original work by Stauffer et al. [207].

161



A. DATASETS

A.6.2 Subset for Graph Classification

The HistoGraph dataset provides a subset of the George Washington data for
the evaluation of the word graph classification problem. It consists of 293 graphs
generated from 30 distinct words. Therefore, given a word, the task of the classifier
is to predict its class which should be among the 30 words. Nodes are only labeled
with their position in the image. The entire dataset is divided into 90, 60 and 143
graphs respectively for training, validation and test purposes. Table A.4 provides
a summary of this subset.

Table A.4: Details of the HistoGraph dataset for graph classification.

Subsets # Graphs # Classes Avg. |V | Avg. |E| Node labels

Keypoint

293 (90, 60, 143) 30

101.8 94.8

(x,y) position

Grid-NNA 56.4 81.4
Grid-MST 66.1 64.4
Grid-DEL 74.1 205.1
Projection 63.1 58.8
Split 73.3 69.8

A.7 Table Detection Datasets

Three datasets have been used for the evaluation of the proposed table detection
framework. Even though the evaluated task is the same, the typology of the
documents presents a huge variability. Therefore, they are useful to evaluate our
framework in different use cases.

• CON-ANONYM: This is a particular dataset of 960 documents which has
been used as part of an industrial collaboration. Therefore, it is only available
for the internal use in omni:us and in cannot be made publicly available as
it contains sensitive contents. The documents are annotated with 8 region
labels including the following claim, car, cost, supplier, insured, mixed, other
and table.

• RVL-CDIP: The original dataset proposed by Harley et al. [104] was de-
signed for the evaluation of CNNs for the task of document image classifica-
tion and retrieval. It contains 400, 000 grayscale images, which are divided
in 16 classes with 25, 000 images per class. During the development of this
dissertation, we made use of a subset of the documents for the evaluation
of our table detection framework. We selected 518 images from the invoice
class, which have been annotated with 6 regions labels including supplier,
other, table, reciever, invoice_info and total.

162



A.7. Table Detection Datasets

• cTDaR: Table detection and recognition has become a fundamental step
for any information retrieval technique working on structured and semi-
structured documents. The ICDAR 2019 Competition on Table Detection
and Recognition (cTDaR)7 [87] is one of the many research events that have
recently rised attention to the table analysis problem. This competition is
divided into two tracks and two data typologies per track.

– Track A: Table detection in document images containing one or several
tables. The ground truth is provided as the bounding box of the tables
per document.

– Track B: Table recognition in the same document images as the first
track. Now, the cell structure of the table should be provided, i.e. cell
bounding boxes and the corresponding starting and ending row and
column index. However, table recognition is divided in two subtracks,

∗ Track B.1 : In this subtrack, the document image is provided jointly
with the table bounding box. Therefore, it evaluates only the per-
formance on parsing the table structure.
∗ Track B.2 : In the second subtrack, the document image is provided

alone. Therefore, the table should be first detected and, afterwards,
the cell structure is analyzed.

Along with these two tracks, two document typologies are provided.

– Modern dataset: 840 document images, generated from born-digital
formats such as PDF. These documents contain Chinese and English
documents collected from several sources such as scientific journals,
forms or financial statements.

– Archival dataset: The provided documents were gathered from more
than 23 institutions around the world. The documents do not fol-
low a unique structure but they have a great diversity. For example,
images where collected from hand-drawn accounting books, stock ex-
change lists, train timetables, prisoner lists and many more. In total
840 document images were collected.

In this work, we have utilized the modern dataset as it contains data closer
to the proposed use case of invoices.

Moreover, due to the anonymization step, we only aim to compare ourselves on the
task defined for the track A. Table A.5 shows a comparison of the datasets. Note
that in CON-ANONYM and RVL-CDIP are datasets containing pages without
tables.

7Available at http://sac.founderit.com/

163

http://sac.founderit.com/


A. DATASETS

Table A.5: Summary of the datasets statistics as well as the proposed division
into training, validation and test sets.

CON-ANONYM RVL-CDIP cTDaR

Total # documents
(tr, va, te)

950
(665, 95, 195)

518
(362, 52, 104)

840
(540, 60, 240)

Total # pages 1252 518 840
Total # tables 1202 485 1423
Total # classes 8 6 2

(a) (b)

(c) (d)

Figure A.8: Overview of the table detection datasets. The provided examples
depict the table regions as provided in the ground-truth. The images corresponds
to (a) CON-ANONYM dataset; (b) cTDaR dataset; (c-d) RVL-CDIP dataset

164



List of Contributions

For a moment, nothing happened.
Then, after a second or so, nothing continued
to happen.

– Douglas Adams

During the development of this dissertation, several contributions to the commu-
nity have been developed. In this chapter, the Scientific Communications and
leaded projects are listed. Authors marked with * indicate equal contribution on
that work.

Topics

The main topic of this dissertation, is the development of graph-based frameworks
in the field of document image analysis and recognition. However, this thesis has
also generated other side contributions in other topics that had raised our attention
on the same field.

• Handwritten Text Recognition (HTR): It is the task of transforming images
of handwritten text into machine readable format. The proposed system should
deal with the huge variability of handwritten text from different writers.

• Optical Music Recognition (OMR): It is the task of transcribing a music
score into a machine readable format. The formulation should not only, similarly
to HTR, recognize the symbols appearing on the music score, which indicate the
rhythm, but also their position in the staff indicating the pitch.

• Sketch-based Image Retrieval (SBIR): This topic investigates the problem
of sketch-based image retrieval, where human sketches are used as queries to
conduct retrieval of photos. In particular, we focused on the problem from
the zero-shot point of view, where the evaluated sketches came from unseen
categories.

165



LIST OF CONTRIBUTIONS

Journals

1. Pau Riba, Josep Lladós, Alicia Fornés and Anjan Dutta. Large-scale Graph
Indexing using Binary Embeddings of Node Contexts for Information Spotting
in Document Image Databases. In Pattern Recognition Letters, Vol.87, pp.203–
211, 2016, (Q2)

2. Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornés. From Optical
Music Recognition to Handwritten Music Recognition: a Baseline. In Pattern
Recognition Letters, Vol.123, pp.1–8, 2019, (Q2)

3. Pau Riba, Josep Lladós and Alicia Fornés. Hierarchical graphs for coarse-to-
fine error tolerant matching. In Pattern Recognition Letters, Vol.134, pp.116–
124, 2020, (Q2).

4. Anjan Dutta*, Pau Riba*, Josep Lladós and Alicia Fornés. Hierarchical
Stochastic Graphlet Embedding for Graph-based Pattern Recognition. In Neu-
ral Computing and Applications, 2020, (Q1)

5. Lei Kang, Pau Riba, Mauricio Villegas, Alicia Fornés and Marçal Rusiñol.
Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence
Handwritten Word Recognition Architecture. In Pattern Recognition 2020,
(Q1; Submitted)

International Conferences

1. Pau Riba, Jon Almazán, Alicia Fornés, David Fernández-Mota, Ernest Val-
veny and Josep Lladós. e-Crowds: a mobile platform for browsing and searching
in historical demography-related manuscripts. In Proceedings of the Interna-
tional Conference on Frontiers in Handwriting Recognition, pp.228–233, 2014.

2. David Fernández-Mota, Pau Riba, Alicia Fornés and Josep Lladós. On the
Influence of Key Point Encoding for Handwritten Word Spotting. In Proceed-
ings of the International Conference on Frontiers in Handwriting Recognition,
pp.476–481, 2014.

3. Olivier Lefebvre, Pau Riba, Jules Gagnon-Marchand, Charles Fournier, Alicia
Fornés, Josep Lladós and Réjean Plamondon. Monitoring Neuromotricity On-
line: a Cloud Computing Approach. In Proceedings of the Biennial Conference
of the International Graphonomics Society, pp.63–66, 2015.

4. Pau Riba, Josep Lladós, Alicia Fornés and Anjan Dutta. Large-scale graph
indexing using binary embeddings of node contexts. In Graph-Based Represen-
tations in Pattern Recognition, Vol.9069, pp.208–217, 2015.

166



5. Pau Riba, Josep Lladós and Alicia Fornés. Handwritten Word Spotting by
Inexact Matching of Grapheme Graphs. In Proceedings of the International
Conference on Document Analysis and Recognition, pp.781–785, 2015.

6. Arnau Baró, Pau Riba and Alicia Fornés. Towards the recognition of com-
pound music notes in handwritten music scores. In Proceedings of the Interna-
tional Conference on Frontiers in Handwriting Recognition, pp.465–470, 2016.

7. Pau Riba, Alicia Fornés and Josep Lladós. Towards the alignment of hand-
written music scores. In Graphic Recognition. Current Trends and Challenges,
Vol.9657, pp.103–116, 2017.

8. Pau Riba, Alicia Fornés and Josep Lladós. Error-Tolerant Coarse-to-Fine
Matching Model for Hierarchical Graphs. In Graph-Based Representations in
Pattern Recognition, Vol.10310, pp.107–117, 2017.

9. Anjan Dutta, Pau Riba, Josep Lladós and Alicia Fornés. Pyramidal Stochastic
Graphlet Embedding for Document Pattern Classification. In Proceedings of
the International Conference on Document Analysis and Recognition, pp.33–
38, 2017.

10. Pau Riba, Anjan Dutta, Sounak Dey, Josep Lladós and Alicia Fornés. Improv-
ing Information Retrieval in Multiwriter Scenario by Exploiting the Similarity
Graph of Document Terms. In Proceedings of the International Conference on
Document Analysis and Recognition, pp.475–480, 2017.

11. Jialuo Chen, Pau Riba, Alicia Fornés, Joan Mas, Josep Lladós and Joana
Maria Pujadas-Mora. Word-Hunter: A Gamesourcing Experience to Validate
the Transcription of Historical Manuscripts. In Proceedings of the International
Conference on Frontiers in Handwriting Recognition, pp.528–533, 2018.

12. Pau Riba, Andreas Fischer, Josep Lladós and Alicia Fornés. Learning Graph
Distances with Message Passing Neural Networks. In Proceedings of the Inter-
national Conference on Pattern Recognition, pp.2239-2244, 2018. (Best Sci-
entific Paper Award)

13. Lei Kang, J.Ignacio Toledo, Pau Riba, Mauricio Villegas, Alicia Fornés and
Marçal Rusiñol. Convolve, Attend and Spell: An Attention-based Sequence-
to-Sequence model for Handwritten Word Recognition. In Proceedings of the
German Conference on Pattern Recognition, pp.459–472, 2018.

14. Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornés. Optical
Music Recognition by Long Short-Term Memory Networks. In Graphic Recog-
nition. Current Trends and Evolutions, Vol.11009, pp.81–95, 2018.

15. Sounak Dey*, Pau Riba*, Anjan Dutta, Josep Lladós and Yi-Zhe Song. Doo-
dle to Search: Practical Zero-Shot Sketch-Based Image Retrieval. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp.2179–2188, 2019.

167



LIST OF CONTRIBUTIONS

16. Pau Riba, Anjan Dutta, Lutz Goldmann, Alicia Fornés, Oriol Ramos and
Josep Lladós. Table Detection in Invoice Documents by Graph Neural Net-
works. In Proceedings of the International Conference on Document Analysis
and Recognition, pp.122–127, 2019.

17. Lei Kang, Marçal Rusiñol, Alicia Fornés, Pau Riba and Mauricio Villegas.
Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recogni-
tion. In Proceedings of the Winter Conference on Applications of Computer
Vision, pp.3502–3511, 2020.

18. Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés and Mauricio Villegas.
Distilling Content from Style for Handwritten Word Recognition. In Proceed-
ings of the International Conference on Frontiers in Handwriting Recognition,
2020 (Accepted).

19. Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol, Alicia Fornés and Mauri-
cio Villegas. GANwriting: Content-Conditioned Generation of Styled Hand-
written Word Images. In Proceedings of the European Conference on Computer
Vision, 2020 (Accepted).

20. Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés and Mauricio Villegas. Pay
Attention to What You Read: Non-recurrent Handwritten Text Recognition.
In arXiv preprint arXiv:2005.13044, 2020.

Tutorials

1. GMPRDIA: Graph-based Methods in Pattern Recognition & Document Image
Analysis. In the International Conference on Document Analysis and Recogni-
tion, on September 21, 2019.

Leaded R&D Projects

1. Digitus II: Automatic Indexation Service for Handwritten Archives. Funded by
AGAUR Llavor, from 21/07/2017 to 21/01/2018. co-PI.

Contributed open source

1. Kornia: Open Source Differentiable Computer Vision Library for PyTorch.
Contributted in the Data Augmentation module. Code: https://github.
com/arraiyopensource/kornia.

168

https://github.com/arraiyopensource/kornia
https://github.com/arraiyopensource/kornia


Bibliography

[1] Edward H. Adelson, Charles H. Anderson, James R. Bergen, Peter J. Burt,
and Joan M. Ogden. Pyramid methods in image processing. RCA Engineer,
29(6):33–41, 1984.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals
of Mathematics, 160:781–793, 2004.

[3] Narendra Ahuja and Sinisa Todorovic. From region based image represen-
tation to object discovery and recognition. In Structural, Syntactic, and
Statistical Pattern Recognition, volume 6218, pages 1–19, 2010.

[4] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast
retina keypoint. In Proceedings of the IEEE International Conference on
Computer Vision, pages 510–517, 2012.

[5] Jon Almazán, Alicia Fornés, and Ernest Valveny. Deformable hog-based
shape descriptor. In Proceedings of the International Conference on Docu-
ment Analysis and Recognition, pages 1022–1026, 2013.

[6] Jon Almazán, Albert Gordo, Alicia Fornés, and Ernest Valveny. Word spot-
ting and recognition with embedded attributes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 36(12):2552–2566, 2014.

[7] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J. Zaki. Is
there a best quality metric for graph clusters? In Joint European conference
on machine learning and knowledge discovery in databases, pages 44–59,
2011.

[8] Mohammad Reza Ameri, Michael Stauffer, Kaspar Riesen, Tien D Bui, and
Andreas Fischer. Graph-based keyword spotting in historical manuscripts
using Hausdorff edit distance. Pattern Recognition Letters, 121:61–67, 2019.

[9] Oron Ashual and Lior Wolf. Specifying object attributes and relations in
interactive scene generation. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4561–4569, 2019.

169



BIBLIOGRAPHY

[10] Bengt Aspvall and Richard E Stone. Khachiyan’s linear programming algo-
rithm. Journal of algorithms, 1(1):1–13, 1980.

[11] James Atwood and Don Towsley. Diffusion-convolutional neural networks.
In Advances in Neural Information Processing Systems, pages 1993–2001,
2016.

[12] Furqan Aziz, Richard C. Wilson, and Edwin R. Hancock. Backtrackless
walks on a graph. IEEE transactions on neural networks and learning sys-
tems, 24(6):977–989, 2013.

[13] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings
of the annual ACM symposium on Theory of Computing, pages 684–697,
2016.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
International Conference on Learning Representations, 2015.

[15] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei
Wang. SimGNN: A neural network approach to fast graph similarity compu-
tation. In Proceedings of the ACM International Conference on Web Search
and Data Mining, pages 384–392, 2019.

[16] Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-
based efficient graph similarity computation via multi-scale convolutional set
matching. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

[17] Pierre Baldi and Yves Chauvin. Neural networks for fingerprint recognition.
Neural Computation, 5(3):402–418, 1993.

[18] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk.
Learning local feature descriptors with triplets and shallow convolutional
neural networks. In Proceedings of the British Machine Vision Conference,
pages 119.1–119.11, 2016.

[19] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[20] Serge Belongie, Charless Fowlkes, Fan Chung, and Jitendra Malik. Spectral
partitioning with indefinite kernels using the nyström extension. In Pro-
ceedings of the European Conference on Computer Vision, pages 531–542,
2002.

[21] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

170



BIBLIOGRAPHY

[22] Karsten M. Borgwardt. Graph Kernels. PhD thesis, Ludwig-Maximilians-
Universität München, 2007.

[23] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on
graphs. In Proceedings of the IEEE International Conference on Data Min-
ing, pages 74–81, 2005.

[24] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein function predic-
tion via graph kernels. Bioinformatics, 21:i47–i56, 2005.

[25] Ehsan Zare Borzeshi, Massimo Piccardi, Kaspar Riesen, and Horst Bunke.
Discriminative prototype selection methods for graph embedding. Pattern
Recognition, 46(6):1648–1657, 2013.

[26] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv
preprint arXiv:1711.07553, 2017.

[27] Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang, and Josep Lladós. Hierarchi-
cal graph representation for symbol spotting in graphical document images.
In Structural, Syntactic, and Statistical Pattern Recognition, pages 529–538,
2012.

[28] Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang, and Josep Lladós. Hierar-
chical plausibility-graphs for symbol spotting in graphical documents. In
Graphics Recognition. Current Trends and Challenges, pages 25–37, 2014.

[29] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. Signature verification using a "siamese" time delay neural network. In
Advances in Neural Information Processing Systems, pages 737–744, 1994.

[30] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[31] Luc Brun and Walter Kropatsch. Contains and inside relationships within
combinatorial pyramids. Pattern Recognition, 39(4):515–526, 2006.

[32] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. Proceedings of the
International Conference on Learning Representations, 2014.

[33] Quang Anh Bui, Muriel Visani, and Remy Mullot. Unsupervised word spot-
ting using a graph representation based on invariants. In Proceedings of
the International Conference on Document Analysis and Recognition, pages
616–620, 2015.

[34] H. Bunke and G. Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1(4):245–253, 1983.

171



BIBLIOGRAPHY

[35] Horst Bunke and Kaspar Riesen. Improving vector space embedding
of graphs through feature selection algorithms. Pattern Recognition,
44(9):1928–1940, 2010.

[36] Horst Bunke and Kaspar Riesen. Recent advances in graph-based pattern
recognition with applications in document analysis. Pattern Recognition,
44(5):1057–1067, 2011.

[37] Terrence Caelli and Serhiy Kosinov. An eigenspace projection clustering
method for inexact graph matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(4):515–519, 2004.

[38] Hongyun Cai, Vincent W. Zheng, and Kevin Chang. A comprehensive survey
of graph embedding: problems, techniques and applications. IEEE Trans-
actions on Knowledge and Data Engineering, 2018.

[39] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
BRIEF: Binary robust independent elementary features. In Proceedings of
the European Conference on Computer Vision, volume 6314, pages 778–792,
2010.

[40] Francesca Cesarini, Simone Marinai, L. Sarti, and Giovanni Soda. Train-
able table location in document images. In Proceedings of the International
Conference on Pattern Recognition, pages 236–240, 2002.

[41] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. ACM transactions on intelligent systems and technology, 2(3):27,
2011.

[42] Ushasi Chaudhuri, Biplab Banerjee, and Avik Bhattacharya. Siamese graph
convolutional network for content based remote sensing image retrieval.
Computer Vision and Image Understanding, 184:22–30, 2019.

[43] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709, 2020.

[44] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. FG-index: Towards
verification-free query processing on graph databases. In Proceedings of the
ACM SIGMOD international conference on Management of data, pages 857–
872, 2007.

[45] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. In Proceedings of Workshop on Syntax, Semantics and Structure
in Statistical Translation, 2014.

172



BIBLIOGRAPHY

[46] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder–decoder for statistical machine
translation. In Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1724–1734, 2014.

[47] Stéphane Clinchant, Hervé Déjean, Jean-Luc Meunier, Eva Maria Lang, and
Florian Kleber. Comparing machine learning approaches for table recogni-
tion in historical register books. In International Workshop on Document
Analysis Systems, 2018.

[48] Francesc Comellas and Juan Paz-Sánchez. Reconstruction of networks from
their betweenness centrality. In Proceedings of the Workshops on Applica-
tions of Evolutionary Computation, pages 31–37, 2008.

[49] Donatello Conte, Pasquale Foggia, Jean-Michel Jolion, and Mario Vento. A
graph-based, multi-resolution algorithm for tracking objects in presence of
occlusions. Pattern Recognition, 39(4):562–572, 2006.

[50] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty
years of graph matching in pattern recognition. International Journal of
Pattern Recognition and Artificial Intelligence, 18(3):265–298, 2004.

[51] Hani Daher, Djamel Gaceb, Véronique Eglin, Stéphane Bres, and Nicole
Vincent. Ancient handwritings decomposition into graphemes and codebook
generation based on graph coloring. In International Conference on Frontiers
in Handwriting Recognition, pages 119–124, 2010.

[52] Nicholas Dahm, Horst Bunke, Terry Caelli, and Yongsheng Gao. A unified
framework for strengthening topological node features and its application
to subgraph isomorphism detection. In International Workshop on Graph-
Based Representation in Pattern Recognition, volume 7877, pages 11–20,
2013.

[53] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J.
Shusterman, and Corwin Hansch. Structure-activity relationship of muta-
genic aromatic and heteroaromatic nitro compounds. correlation with molec-
ular orbital energies and hydrophobicity. Journal of Medicinal Chemistry,
34(2):786–797, 1991.

[54] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In
Advances in Neural Information Processing Systems, pages 3844–3852, 2016.

[55] Mathieu Delalandre, Tony Pridmore, Ernest Valveny, Hervé Locteau, and
Eric Trupin. Building synthetic graphical documents for performance eval-
uation. In Graphics Recognition. Recent Advances and New Opportunities,
pages 288–298, 2008.

173



BIBLIOGRAPHY

[56] Aline Deruyver, Yann Hodé, Eric Leammer, and Jean-Michel Jolion. Adap-
tive pyramid and semantic graph: Knowledge driven segmentation. In Inter-
national Workshop on Graph-Based Representation in Pattern Recognition,
pages 213–222, 2005.

[57] Sounak Dey, Anguelos Nicolaou, Josep Lladós, and Umapada Pal. Evalua-
tion of word spotting under improper segmentation scenario. International
Journal on Document Analysis and Recognition, 22(4):361–374, 2019.

[58] Sounak Dey, Pau Riba, Anjan Dutta, Josep Lladós, and Yi-Zhe Song. Doodle
to search: Practical zero-shot sketch-based image retrieval. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
2179–2188, 2019.

[59] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology, 330(4):771–
783, 2003.

[60] François-Xavier Dupé and Luc Brun. Edition within a graph kernel frame-
work for shape recognition. In International Workshop on Graph-Based Rep-
resentation in Pattern Recognition, volume 5534, pages 11–20, 2009.

[61] François-Xavier Dupé and Luc Brun. Hierarchical bag of paths for kernel
based shape classification. In Structural, Syntactic, and Statistical Pattern
Recognition, pages 227–236, 2010.

[62] Anjan Dutta. Inexact Subgraph Matching Applied to Symbol Spotting in
Graphical Documents. PhD thesis, Universitat Autònoma de Barcelona„
2014.

[63] Anjan Dutta, Josep Lladós, Horst Bunke, and Umapada Pal. A product
graph based method for dual subgraph matching applied to symbol spotting.
In Graphics Recognition. Current Trends and Challenges, pages 11–24, 2014.

[64] Anjan Dutta, Josep Llados, and Umapada Pal. A symbol spotting approach
in graphical documents by hashing serialized graphs. Pattern Recognition,
46(3):752–768, 2013.

[65] Anjan Dutta, Pau Riba, Josep Lladós, and Alicia Fornés. Pyramidal stochas-
tic graphlet embedding for document pattern classification. In Proceedings of
the International Conference on Document Analysis and Recognition, pages
33–38, 2017.

[66] Anjan Dutta and Hichem Sahbi. Stochastic graphlet embedding. IEEE
Transactions on Neural Networks and Learning Systems, 30(8):2369–2382,
2019.

174



BIBLIOGRAPHY

[67] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolu-
tional networks on graphs for learning molecular fingerprints. In Advances
in Neural Information Processing Systems, pages 2224–2232, 2015.

[68] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Ben-
gio, and Xavier Bresson. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

[69] David W. Eggert, Kevin W. Bowyer, Charles R. Dyer, Henrik I. Christensen,
and Dmitry B. Goldgof. The scale space aspect graph. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(11):1114–1130, 1993.

[70] Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, Marcello Pelillo,
and Laura Leal-Taixe. The group loss for deep metric learning. arXiv
preprint arXiv:1912.00385, 2019.

[71] Sergio Escalera, Alicia Fornés, Oriol Pujol, Petia Radeva, Gemma Sánchez,
and Josep Lladós. Blurred shape model for binary and grey-level symbol
recognition. Pattern Recognition Letters, 30(15):1424–1433, 2009.

[72] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-
mentarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[73] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun.
Learning hierarchical features for scene labeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1915–1929, 2013.

[74] Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning nat-
ural scene categories. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 524–531, 2005.

[75] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for
object recognition. International journal of computer vision, 61(1):55–79,
2005.

[76] David Fernández-Mota, Jon Almazán, Núria Cirera, Alicia Fornés, and Josep
Lladós. BH2M: The barcelona historical, handwritten marriages database.
In Proceedings of the International Conference on Pattern Recognition, pages
256–261, 2014.

[77] David Fernández-Mota, Pau Riba, Alicia Fornés, and Josep Lladós. On the
influence of key point encoding for handwritten word spotting. In Interna-
tional Conference on Frontiers in Handwriting Recognition, pages 476–481,
2014.

[78] Andreas Fischer, Andreas Keller, Volkmar Frinken, and Horst Bunke. HMM-
based word spotting in handwritten documents using subword models. In
Proceedings of the International Conference on Pattern Recognition, pages
3416–3419, 2010.

175



BIBLIOGRAPHY

[79] Andreas Fischer, Andreas Keller, Volkmar Frinken, and Horst Bunke.
Lexicon-free handwritten word spotting using character HMMs. Pattern
Recognition Letters, 33(7):934–942, 2012.

[80] Andreas Fischer, Kaspar Riesen, and Horst Bunke. Graph similarity features
for HMM-based handwriting recognition in historical documents. In Interna-
tional Conference on Frontiers in Handwriting Recognition, pages 253–258,
2010.

[81] Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. A fast matching algorithm for graph-based handwriting recognition.
In International Workshop on Graph-Based Representation in Pattern Recog-
nition, pages 194–203, 2013.

[82] Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. Approximation of graph edit distance based on Hausdorff matching.
Pattern Recognition, 48(2):331–343, 2015.

[83] Andreas Fischer, Seiichi Uchida, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. Improving Hausdorff edit distance using structural node context. In
International Workshop on Graph-Based Representation in Pattern Recog-
nition, pages 148–157, 2015.

[84] Martin A. Fischler and Robert A. Elschlager. The representation and match-
ing of pictorial structures. IEEE Transactions on computers, 100(1):67–92,
1973.

[85] Pasquale Foggia, Gennaro Percannella, and Mario Vento. Graph matching
and learning in pattern recognition in the last 10 years. International Journal
of Pattern Recognition and Artificial Intelligence, 28(1):1–40, 2014.

[86] Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, pages 35–41, 1977.

[87] Liangcai Gao, Yilun Huang, Hervé Déjean, Jean-Luc Meunier, Qinqin Yan,
Yu Fang, Florian Kleber, and Eva Lang. ICDAR 2019 competition on ta-
ble detection and recognition (cTDaR). In Proceedings of the International
Conference on Document Analysis and Recognition, pages 1510–1515, 2019.

[88] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph
edit distance. Pattern Analysis and Applications, 13(1):113–129, 2010.

[89] Victor Garcia and Joan Bruna. Few-shot learning with graph neural net-
works. In Proceedings of the International Conference on Learning Repre-
sentations, 2018.

[90] Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD
Explorations Newsletter, 5(1):49–58, 2003.

176



BIBLIOGRAPHY

[91] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Gio-
vanni Zappella, and Evans Etrue. On context-dependent clustering of ban-
dits. In Proceedings of the International Conference on Machine Learning,
pages 1253–1262, 2017.

[92] Nabil Ghanmi and Abdel Belaid. Table detection in handwritten chemistry
documents using conditional random fields. In International Conference on
Frontiers in Handwriting Recognition, pages 146–151, 2014.

[93] Jaume Gibert, Ernest Valveny, and Horst Bunke. Graph embedding in vector
spaces by node attribute statistics. Pattern Recognition, 45(9):3072–3083,
2012.

[94] Azka Gilani, Shah Rukh Qasim, Imran Malik, and Faisal Shafait. Table
detection using deep learning. In Proceedings of the International Conference
on Document Analysis and Recognition, volume 1, pages 771–776, 2017.

[95] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. In Proceed-
ings of the International Conference on Machine Learning, pages 1263–1272,
2017.

[96] Michelle Girvan and Mark E. J. Newman. Community structure in social
and biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[97] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 9785–9795, 2019.

[98] Romain Goffe, Luc Brun, and Guillaume Damiand. Tiled top-down pyramids
and segmentation of large histological images. In International Workshop on
Graph-Based Representation in Pattern Recognition, pages 255–264, 2011.

[99] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[100] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[101] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In Proceedings of the IEEE International Joint
Conference on Neural Networks, volume 2, pages 729–734, 2005.

[102] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 855–864, 2016.

177



BIBLIOGRAPHY

[103] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[104] Adam W. Harley, Alex Ufkes, and Konstantinos G. Derpanis. Evaluation
of deep convolutional nets for document image classification and retrieval.
In Proceedings of the International Conference on Document Analysis and
Recognition, pages 991–995, 2015.

[105] Christopher G. Harris and Mike Stephens. A combined corner and edge
detector. In Proceedings of the Alvey Vision Conference, volume 15, pages
147–5244, 1988.

[106] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[107] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[108] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels
for predictive graph mining. In Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 158–167,
2004.

[109] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the ACM symposium
on Theory of computing, pages 604–613, 1998.

[110] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
International Conference on Machine Learning, pages 448–456, 2015.

[111] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma,
Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3668–3678, 2015.

[112] Jean-Michel Jolion. Stochastic pyramid revisited. Pattern Recognition Let-
ters, 24(8):1035–1042, 2003.

[113] Jean-Michel Jolion and Azriel Rosenfeld. A pyramid framework for early
vision: multiresolutional computer vision, volume 251. Springer Science &
Business Media, 2012.

[114] Salim Jouili and Salvatore Tabbone. Graph embedding using constant shift
embedding. In Proceedings of the International Conference on Pattern Recog-
nition, pages 83–92, 2010.

178



BIBLIOGRAPHY

[115] Lei Kang, Pau Riba, Mauricio Villegas, Alicia Fornés, and Marçal Rusiñol.
Candidate fusion: Integrating language modelling into a sequence-to-
sequence handwritten word recognition architecture. Pattern Recognition,
2020. Submitted.

[116] Lei Kang, J. Ignacio Toledo, Pau Riba, Mauricio Villegas, Alicia Fornés, and
Marçal Rusiñol. Convolve, attend and spell: An attention-based sequence-
to-sequence model for handwritten word recognition. In Proceedings of the
German Conference on Pattern Recognition, pages 459–472, 2018.

[117] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for graphs.
Kernel methods in computational biology, 39(1):101–113, 2004.

[118] Isaak Kavasidis, Sergio Palazzo, Concetto Spampinato, Carmelo Pino,
Daniela Giordano, Danilo Giuffrida, and Paolo Messina. A saliency-based
convolutional neural network for table and chart detection in digitized doc-
uments. arXiv preprint arXiv:1804.06236, 2018.

[119] Thomas Kieninger and Andreas Dengel. Table recognition and labeling using
intrinsic layout features. In International Conference on Advances in Pattern
Recognition, pages 307–316, 1999.

[120] Thomas Kieninger and Andreas Dengel. Applying the T-Recs table recogni-
tion system to the business letter domain. In Proceedings of the International
Conference on Document Analysis and Recognition, pages 518–522, 2001.

[121] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-
labeling graph neural network for few-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 11–
20, 2019.

[122] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[123] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. Proceedings of the International Conference on
Learning Representations, 2017.

[124] Elvis Koci, Maik Thiele, Wolfgang Lehner, and Romero Oscar. Table recog-
nition in spreadsheets via a graph representation. In International Workshop
on Document Analysis Systems, pages 139–144, 2018.

[125] Risi Kondor and Karsten M. Borgwardt. The skew spectrum of graphs.
In Proceedings of the International Conference on Machine Learning, pages
496–503, 2008.

[126] Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. In
Advances in Neural Information Processing Systems, pages 2982–2990, 2016.

179



BIBLIOGRAPHY

[127] Risi Kondor, Nino Shervashidze, and Karsten M. Borgwardt. The graphlet
spectrum. In Proceedings of the International Conference on Machine Learn-
ing, pages 529–536, 2009.

[128] Nathan Korda, Balázs Szörényi, and Shuai Li. Distributed clustering of
linear bandits in peer to peer networks. In Proceedings of the International
Conference on Machine Learning, volume 48, pages 1301–1309, 2016.

[129] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

[130] John Lafferty and Guy Lebanon. Diffusion kernels on statistical manifolds.
Journal of Machine Learning Research, 6:129–163, 2005.

[131] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the International Conference on Machine
Learning, pages 282–289, 2001.

[132] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[133] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and
Sébastien Adam. Graph edit distance: a new binary linear programming
formulation. arXiv preprint arXiv:1505.05740, 2015.

[134] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Brisk: Binary
robust invariant scalable keypoints. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2548–2555, 2011.

[135] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-
based multimedia information retrieval: State of the art and challenges.
ACM Transactions on Multimedia Computing, Communications, and Appli-
cations, 2(1):1–19, 2006.

[136] Shuai Li, Wei Chen, and Kwong-Sak Leung. Improved algorithm on online
clustering of bandits. In Proceedings of the International Joint Conference
on Artificial Intelligence, 2019.

[137] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filter-
ing bandits. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 539–548, 2016.

[138] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli.
Graph matching networks for learning the similarity of graph structured ob-
jects. In Proceedings of the International Conference on Machine Learning,
pages 3835–3845, 2019.

180



BIBLIOGRAPHY

[139] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. In Proceedings of the International Con-
ference on Learning Representations, 2016.

[140] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel CNN for
efficient 3D deep learning. In Advances in Neural Information Processing
Systems, pages 963–973, 2019.

[141] Mario Livio. The golden ratio: The story of phi, the world’s most astonishing
number. Broadway Books, 2008.

[142] Josep Lladós, Marçal Rusiñol, Alicia Fornés, David Fernández, and Anjan
Dutta. On the influence of word representations for handwritten word spot-
ting in historical documents. International Journal of Pattern Recognition
and Artificial Intelligence, 26(05), 2012.

[143] Arnaud Lods, Eric Anquetil, and Sébastien Macé. Fuzzy visibility graph for
structural analysis of online handwritten mathematical expressions. In Pro-
ceedings of the International Conference on Document Analysis and Recog-
nition, pages 641–646, 2019.

[144] D. Lohani, A. Belaïd, and Y. Belaïd. An invoice reading system using a
graph convolutional network. In Proceedings of the Asian Conference on
Computer Vision Workshops, 2018.

[145] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[146] David G. Lowe. Perceptual Organization and Visual Recognition, volume 5.
Springer Science & Business Media, 2012.

[147] Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Lladós, and
Thierry Brouard. Fuzzy multilevel graph embedding. Pattern Recognition,
46(2):551–565, 2013.

[148] Mahshad Mahdavi, Michael Condon, Kenny Davila, and Richard Zanibbi.
LPGA: Line-of-sight parsing with graph-based attention for math formula
recognition. In Proceedings of the International Conference on Document
Analysis and Recognition, pages 647–654, 2019.

[149] Raghavan Manmatha, Chengfeng Ha, and Edward M. Riseman. Word spot-
ting: a new approach to indexing handwriting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 631–637,
1996.

[150] Rebeca Marfil, Luis Molina-Tanco, Antonio Bandera, Juan Antonio Ro-
dríguez, and Francisco Sandoval. Pyramid segmentation algorithms revis-
ited. Pattern Recognition, 39(8):1430–1451, 2006.

181



BIBLIOGRAPHY

[151] Rebeca Marfil, Luis Molina-Tanco, Antonio Bandera, and Francisco San-
doval. The construction of bounded irregular pyramids with a union-find
decimation process. In International Workshop on Graph-Based Represen-
tation in Pattern Recognition, pages 307–318, 2007.

[152] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym,
Ersin Yumer, Vladimir G Kim, and Yaron Lipman. Convolutional neu-
ral networks on surfaces via seamless toric covers. ACM Transactions on
Graphics, 36(4):71, 2017.

[153] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Image and vision
computing, 22(10):761–767, 2004.

[154] Kurt Mehlhorn. Graph algorithms and NP-completeness. Springer-Verlag
New York, Inc., 1984.

[155] Bruno T. Messmer and Horst Bunke. A decision tree approach to graph and
subgraph isomorphism detection. Pattern Recognition, 32(12):1979–1998,
1999.

[156] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan
Svoboda, and Michael M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model CNNs. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[157] Harry L. Morgan. The generation of a unique machine description for chem-
ical structures-a technique developed at chemical abstracts service. Journal
of Chemical Documentation, 5(2):107–113, 1965.

[158] Seyedeh Fatemeh Mousavi, Mehran Safayani, Abdolreza Mirzaei, and Hoda
Bahonar. Hierarchical graph embedding in vector space by graph pyramid.
Pattern Recognition, 61:245–254, 2017.

[159] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, 5(1):32–38,
1957.

[160] Sameer A. Nene, Shree K. Nayar, Hiroshi Murase, et al. Columbia object im-
age library (COIL-100). Technical report, Department of Computer Science,
Columbia University, 1996.

[161] Michel Neuhaus and Horst Bunke. Bridging the Gap Between Graph Edit
Distance and Kernel Machines. World Scientific, 2007.

[162] Mark E. J. Newman. A measure of betweenness centrality based on random
walks. Social networks, 27(1):39–54, 2005.

182



BIBLIOGRAPHY

[163] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning
convolutional neural networks for graphs. In Proceedings of the International
Conference on Machine Learning, pages 2014–2023, 2016.

[164] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23–27, 1975.

[165] Shubham Singh Paliwal, D. Vishwanath, Rohit Rahul, Monika Sharma, and
Lovekesh Vig. TableNet: Deep learning model for end-to-end table detec-
tion and tabular data extraction from scanned document images. In Proceed-
ings of the International Conference on Document Analysis and Recognition,
pages 128–133, 2019.

[166] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the
overlapping community structure of complex networks in nature and society.
Nature, 435(7043):814–818, 2005.

[167] Elzbieta Pekalska and Robert P. W. Duin. The Dissimilarity Representation
for Pattern Recognition: Foundations And Applications. World Scientific,
2005.

[168] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[169] Ioannis Pratikakis, Konstantinos Zagoris, Basilis Gatos, Joan Puigcerver,
Alejandro H. Toselli, and Enrique Vidal. ICFHR2016 handwritten keyword
spotting competition (H-KWS 2016). In International Conference on Fron-
tiers in Handwriting Recognition, pages 613–618, 2016.

[170] Nataša Pržulj. Biological network comparison using graphlet degree distri-
bution. Bioinformatics, 23(2):e177–e183, 2007.

[171] Shah Rukh Qasim, Hassan Mahmood, and Faisal Shafait. Rethinking table
recognition using graph neural networks. In Proceedings of the International
Conference on Document Analysis and Recognition, pages 142–147, 2019.

[172] Sheikh Faisal Rashid, Abdullah Akmal, Muhammad Adnan, Ali Adnan
Aslam, and Andreas Dengel. Table recognition in heterogeneous documents
using machine learning. In Proceedings of the International Conference on
Document Analysis and Recognition, volume 1, pages 777–782, 2017.

[173] Toni M. Rath and Raghavan Manmatha. Word image matching using dy-
namic time warping. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages II–II, 2003.

[174] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Ad-
vances in Neural Information Processing Systems, pages 91–99, 2015.

183



BIBLIOGRAPHY

[175] Pau Riba, Anjan Dutta, Lutz Goldmann, Alicia Fornés, Oriol Ramos, and
Josep Lladós. Table detection in invoice documents by graph neural net-
works. In Proceedings of the International Conference on Document Analysis
and Recognition, pages 122–127, 2019.

[176] Pau Riba, Andreas Fischer, Josep Lladós, and Alicia Fornés. Learning graph
distances with message passing neural networks. In Proceedings of the In-
ternational Conference on Pattern Recognition, pages 2239–2244, 2018.

[177] Pau Riba, Alicia Fornés, and Josep Lladós. Handwritten word spotting by
inexact matching of grapheme graphs. In Proceedings of the International
Conference on Document Analysis and Recognition, pages 781–785, 2015.

[178] Pau Riba, Josep Lladós, and Alicia Fornés. Error-tolerant coarse-to-fine
matching model for hierarchical graphs. In International Workshop on
Graph-Based Representation in Pattern Recognition, pages 107–117, 2017.

[179] Pau Riba, Josep Lladós, Alicia Fornés, and Anjan Dutta. Large-scale graph
indexing using binary embeddings of node contexts for information spotting
in document image databases. Pattern Recognition Letters, 87:203–211, 2017.

[180] Kaspar Riesen and Horst Bunke. IAM graph database repository for graph
based pattern recognition and machine learning. In Structural, Syntactic,
and Statistical Pattern Recognition, pages 287–297, 2008.

[181] Kaspar Riesen and Horst Bunke. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and Vision computing,
27(7):950–959, 2009.

[182] Kaspar Riesen and Horst Bunke. Graph classification by means of lipschitz
embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(6):1472–1483, 2009.

[183] Kaspar Riesen and Horst Bunke. Graph classification and clustering based
on vector space embedding, volume 77. World Scientific, 2010.

[184] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Bipartite graph matching
for computing the edit distance of graphs. In International Workshop on
Graph-Based Representation in Pattern Recognition, volume 4538, pages 1–
12, 2007.

[185] Antonio Robles-Kelly and Edwin R. Hancock. Graph edit distance from
spectral seriation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(3):365–378, 2005.

[186] Antonio Robles-Kelly and Edwin R. Hancock. A Riemannian approach to
graph embedding. Pattern Recognition, 40(3):1042–1056, 2007.

[187] Paul L. Rosin and Geoff A. W. West. Segmentation of edges into lines and
arcs. Image and Vision Computing, 7(2):109–114, 1989.

184



BIBLIOGRAPHY

[188] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An
efficient alternative to sift or surf. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2564–2571, 2011.

[189] Marçal Rusiñol, David Aldavert, Ricardo Toledo, and Josep Lladós. Effi-
cient segmentation-free keyword spotting in historical document collections.
Pattern Recognition, 48(2):545–555, 2015.

[190] Marçal Rusiñol and Josep Lladós. A performance evaluation protocol for
symbol spotting systems in terms of recognition and location indices. Inter-
national Journal on Document Analysis and Recognition, 12(2):83–96, 2009.

[191] Marçal Rusiñol, Josep Lladós, and Gemma Sánchez. Symbol spotting in vec-
torized technical drawings through a lookup table of region strings. Pattern
Analysis and Applications, 13(3):321–331, 2010.

[192] A. Sanfeliu and King-Sun Fu. A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE transactions on systems, man,
and cybernetics, (3):353–362, 1983.

[193] Eric Saund. A graph lattice approach to maintaining and learning dense
collections of subgraphs as image features. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(10):2323–2339, 2013.

[194] Kenneth M. Sayre. Machine recognition of handwritten words: A project
report. Pattern Recognition, 5(3):213–228, 1973.

[195] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[196] Lambert Schomaker and Marius Bulacu. Automatic writer identification
using connected-component contours and edge-based features of uppercase
western script. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(6):787–798, 2004.

[197] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz
Ahmed. DeepDeSRT: Deep learning for detection and structure recognition
of tables in document images. In Proceedings of the International Conference
on Document Analysis and Recognition, 2017.

[198] Faisal Shafait and Ray Smith. Table detection in heterogeneous documents.
In International Workshop on Document Analysis Systems, pages 65–72,
2010.

[199] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and
applications of tree and graph searching. In Proceedings of the Symposium
on Principles of Database Systems, pages 39–52, 2002.

185



BIBLIOGRAPHY

[200] Yuming Shen, Li Liu, Fumin Shen, and Ling Shao. Zero-shot sketch-image
hashing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3598–3607, 2018.

[201] Nino Shervashidze and Karsten M. Borgwardt. Fast subtree kernels on
graphs. In Advances in Neural Information Processing Systems, pages 1660–
1668, 2009.

[202] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12:2539–2561, 2011.

[203] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten M. Borgwardt. Efficient graphlet kernels for large graph com-
parison. In Proceedings of the International Conference on Artificial Intelli-
gence and Statistics, volume 5, pages 488–495, 2009.

[204] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains. IEEE signal processing magazine, 30(3):83–98, 2013.

[205] Edward Smith, Scott Fujimoto, Adriana Romero, and David Meger. Geomet-
rics: Exploiting geometric structure for graph-encoded objects. In Proceed-
ings of the International Conference on Machine Learning, pages 5866–5876,
2019.

[206] Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs.
In Learning theory and kernel machines, pages 144–158, 2003.

[207] Michael Stauffer, Andreas Fischer, and Kaspar Riesen. A novel graph
database for handwritten word images. In Structural, Syntactic, and Statis-
tical Pattern Recognition, pages 553–563, 2016.

[208] Michael Stauffer, Andreas Fischer, and Kaspar Riesen. Keyword spotting in
historical handwritten documents based on graph matching. Pattern Recog-
nition, 81:240–253, 2018.

[209] Sebastian Sudholt and Gernot A. Fink. PHOCNet: A deep convolutional
neural network for word spotting in handwritten documents. In International
Conference on Frontiers in Handwriting Recognition, pages 277–282, 2016.

[210] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[211] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings of
the International Conference on World Wide Web, pages 1067–1077, 2015.

186



BIBLIOGRAPHY

[212] Michael J. Tarr. The object databank, 2011.

[213] Chris Tensmeyer, Vlad I. Morariu, Brian Price, Scott Cohen, and Tony
Martinez. Deep splitting and merging for table structure decomposition.
In Proceedings of the International Conference on Document Analysis and
Recognition, pages 114–121, 2019.

[214] Hannu Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kramer, and
Christoph Helma. Statistical evaluation of the predictive toxicology challenge
2000–2001. Bioinformatics, 19(10):1183–1193, 2003.

[215] Markus Ulrich, Christian Wiedemann, and Carsten Steger. Combining scale-
space and similarity-based aspect graphs for fast 3d object recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(10):1902–
1914, 2012.

[216] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, pages 5998–
6008, 2017.

[217] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. Proceedings of
the International Conference on Learning Representations, 2017.

[218] Mario Vento. A long trip in the charming world of graphs for pattern recog-
nition. Pattern Recognition, 48(2):291–301, 2015.

[219] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and
fast feature learning on graphs. In Advances in Neural Information Process-
ing Systems, pages 87–97, 2017.

[220] Paul Viola and Michael Jones. Rapid object detection using a boosted cas-
cade of simple features. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages I–I, 2001.

[221] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M.
Borgwardt. Graph kernels. Journal of Machine Learning Research, 11:1201–
1242, 2010.

[222] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowledge and
Information Systems, 14(3):347–375, 2008.

[223] Peng Wang, Veronique Eglin, Christophe Garcia, Christine Largeron, Josep
Lladós, and Alicia Fornes. A novel learning-free word spotting approach
based on graph representation. In International Workshop on Document
Analysis Systems, pages 207–211, 2014.

187



BIBLIOGRAPHY

[224] Peng Wang, Véronique Eglin, Cristophe Garcia, Christine Largeron, Josep
Lladós, and Alicia Fornés. A coarse-to-fine word spotting approach for his-
torical handwritten documents based on graph embedding and graph edit
distance. In Proceedings of the International Conference on Pattern Recog-
nition, pages 3074–3079, 2014.

[225] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial
embedding networks for deep graph matching. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3056–3065, 2019.

[226] Yalin Wang, Ihsin T. Phillipst, and Robert Haralick. Automatic table ground
truth generation and a background-analysis-based table structure extraction
method. In Proceedings of the International Conference on Document Anal-
ysis and Recognition, pages 528–532, 2001.

[227] Chris Watkins. Kernels from matching operations. Technical report, De-
partment of Computer Science, university of London, 1999.

[228] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for
large margin nearest neighbor classification. Journal of Machine Learning
Research, 10:207–244, 2009.

[229] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and
Marcelo J. Weinberger. Inequalities for the l1 deviation of the empirical
distribution. Technical report, HP Labs, Palo Alto, 2003.

[230] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep
learning via semi-supervised embedding. In Neural networks: Tricks of the
trade, pages 639–655. Springer, 2012.

[231] Tomas Wilkinson and Anders Brun. Semantic and verbatim word spotting
using deep neural networks. In International Conference on Frontiers in
Handwriting Recognition, pages 307–312, 2016.

[232] Richard C. Wilson, Edwin R. Hancock, and Bin Luo. Pattern vectors from
algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7):1112–1124, 2005.

[233] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S. Yu Philip. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[234] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. Scene graph gener-
ation by iterative message passing. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5410–5419, 2017.

[235] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of the
International Conference on Machine Learning, pages 2048–2057, 2015.

188



BIBLIOGRAPHY

[236] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful
are graph neural networks? In Proceedings of the International Conference
on Learning Representations, 2019.

[237] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent
structure-based approach. In Proceedings of the ACM SIGMOD interna-
tional conference on Management of data, pages 335–346, 2004.

[238] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1365–1374, 2015.

[239] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph
R-CNN for scene graph generation. In Proceedings of the European Confer-
ence on Computer Vision, pages 670–685, 2018.

[240] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-
supervised learning with graph embeddings. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 40–48, 2016.

[241] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding
belief propagation and its generalizations. Exploring artificial intelligence in
the new millennium, 8:236–239, 2003.

[242] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differ-
entiable pooling. In Advances in Neural Information Processing Systems,
pages 4800–4810, 2018.

[243] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep
networks for video classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4694–4702, 2015.

[244] Jiawei Zhang. Graph neural distance metric learning with graph-bert. arXiv
preprint arXiv:2002.03427, 2020.

[245] Feng Zhou and Fernando de la Torre. Factorized graph matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(9):1774–
1789, 2015.

[246] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

[247] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In
Advances in Neural Information Processing Systems, pages 14747–14756,
2019.

189





This work has been partially supported by the FPU fellowship FPU15 / 06264
from the Spanish Ministerio de Educación, Cultura y Deporte. We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research.




	Agraïments
	Abstract
	Resum
	Resumen
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Setting the Context
	Distilling Patterns from Images
	Structural Pattern Recognition
	Document Image Analysis and Recognition
	Deep Learning in Computer Vision

	Motivation
	Objectives and Contributions of this Thesis
	Organization

	I Graph Representations
	Graph Theory for Pattern Recognition
	Definitions and Notations
	Graph Matching
	Error-tolerant Graph Matching

	Graph Indexing
	Graph Kernels and Embeddings
	Graph Embedding
	Graph Kernel

	Hierarchical Representations

	A Graph-based Representation for Handwritten Words
	Introduction
	Word Spotting
	A Graph-based Word Spotting Framework
	Graph Construction from a Word Image
	Graph Matching for Word Spotting

	Experimental Validation
	Experimental Setup
	Spotting Evaluation

	Conclusions

	Information Spotting by Graph Indexing
	Introduction
	Binary Embedding Formulation
	Binary Topological Node Features
	Indexing

	Experimental Validation
	Experimental Setup
	Graph Classification
	Architectural Symbol Spotting
	Handwritten Word Spotting

	Conclusions

	Hierarchical Representation for Robust Matching
	Introduction
	Hierarchical Attributed Graph Representation
	Hierarchical Construction
	Graph Clustering
	Splitting of Articulation Points

	Error Tolerant Hierarchical Matching
	Experimental Validation
	Object Classification
	Word Spotting

	Conclusions

	Hierarchical Stochastic Graphlet Embedding
	Introduction
	Hierarchical Graph Embedding
	Hierarchical Construction
	Hierarchical Embedding

	Stochastic Graphlet Embedding
	Stochastic Graphlets Sampling
	Hashed graphlets distribution
	Hierarchical Stochastic Graphlet Embedding

	Computational Complexity
	Hierarchical Embedding Complexity
	Stochastic Graphlet Embedding Complexity

	Experimental Validation
	Experiments on Molecular Graph Datasets
	Experiments on Pattern Recognition Datasets
	Parameters Discussion
	Discussion on the Stochasticity of the Algorithm

	Conclusions


	II Geometric Deep Learning
	Geometric Deep Learning
	Geometric Deep Learning
	Node Embeddings
	Graph Neural Networks
	Geometric Deep Learning in Computer Vision

	Learning Graph Distances
	Introduction
	Related Work on Graph Metric Learning
	The Learned Graph Distance Framework
	Learning Node Embeddings
	Graph Distance or Similarity

	Training Setting and Learning Objective
	Experimental Validation
	Historical Keyword Spotting
	Dataset Description
	Experimental Protocol
	Ablation Study
	Results and Discussion

	Experimental Comparison to GMN
	Dataset Description
	Experimental Protocol
	Results and Discussion


	Conclusions

	Table Detection in Invoice Documents
	Introduction
	Related Work on Table Detection and Recognition
	Table Detection Framework
	Graph-based Representation of Invoice Documents
	The GNN Architecture
	Learning Objectives
	Table Detection

	Experimental Validation
	Datasets
	Experimental Protocol
	Ablation Study
	Structural Constraints

	Conclusions


	Conclusions
	Summary of the Contributions
	Discussion
	Open Challenges

	Appendix
	Datasets
	Barcelona Historical Handwritten Marriages Database
	IAM Graph Database Repository
	SESYD Floorplans
	Object classification datasets
	Molecular Graph Datasets
	HistoGraph Database
	Graph Construction
	Subset for Graph Classification

	Table Detection Datasets


	List of Contributions
	Bibliography

