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Introduction
Document pattern classification

I Word and symbol classification.

I Application: document feature generation, document
categorization, spam filtering etc.
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Introduction
Graph based representation

I Limitations of statistical pattern recognition.

I Advantages of structural pattern recognition.

I Graph based representation: relation between object parts.

I Invariant to rotation and affine transformation.

I Comparing graphs: graph matching, graph kernel.
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Introduction
Motivation

I Document part → graph ⇒ noisy conversion

I Unstable representation.
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Introduction
Contribution

I Graph pyramid: multi-scale graph, tolerate noise, stable
representation.

I Stochastic graphlet embedding: avoid graph matching, allows
application of machine learning techniques, low to high order
graphlets statistics.

...

...

...
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Pyramidal Graph Representation

I Multi-scale graph, information at different
resolutions.

I Higher leveled graphs contain abstract
information.

I Graph pyramid construction techniques:

1. Girvan-Newman
2. grPartition
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Girvan-Newman Algorithm

I Algorithm for graph clustering (Girvan
and Newman NAS 2002).

I Basic principle:

1. Compute edge centrality.
2. Remove edge with highest score.
3. Recompute all scores.
4. Repeat 2nd step.

I Results in a dendogram where each
node is an independent cluster.

I Algorithm stops when the given
number of clusters is reached.

Figure credit: S. Papadopoulos, CERTH-ITI, 2011.

10 Pyramidal Stochastic Graphlet Embedding

Dutta et al.



Introduction Pyramidal Graph Representation Stochastic Graphlet Embedding Experimental Validation Conclusion

Pyramid Generation

I Pyramid construction: at a
higher level each cluster is
represented as a node.

I Hierarchical edges: clustered
nodes to their representative
in the higher level.
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Stochastic Graphlets Sampling

I Graphlet sampling is a stochastic and recurrent procedure.

I It is controlled by two parameters M and T .
I Basic principles:

1. Randomly select a node v from G .
2. Add the node v to an empty graph G.
3. Recursively add T connected edges to G.
4. Restart 1st step M times.

I Animation: M = 10, T = 6.
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Stochastic Graphlets Sampling

I A random walk process with a restart.

I Samples M × T connected graphlets, with edges varying from
1 to T .

I Hypothesis: empirical distribution of large amount of sampled
graphlets will be same to actual distribution.
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Hashed Graphlets Distribution

I Graph hash functions:

1. Degree of nodes
2. Betweenness centrality
3. Core numbers
4. Clustering coefficients

I Probability of collision (Dutta and Sahbi, ArXiv, 2017)

I Hash functions with low probability of collision: degree of
nodes, betweenness centrality.

I Hash function =

{
degree of nodes, if t ≤ 4

betweenness centrality, otherwise
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Pyramidal Stochastic Graphlet Embedding
Summary
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Datasets
HistoGraph

I Perfectly segmented word images from George Washington
(GW) dataset.

I 30 different words and six different representations:

  

I Three independent subsets: training (90 words), validation
(60 words) and test (143 words).

I Frequency: train and validation set (2 to 3), test set (3 to 5).

Figure credit: Stauffer et al. S+SSPR 2016
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Results
HistoGraph

Subset Acc. GED Acc. SGE
Acc. PSGE

Level 2 Level 3

Keypoint 77.62 78.32 80.42 (+2.10) 78.32 (+0.00)
Grid-NNA 65.03 72.73 72.73 (+0.00) 74.13 (+1.40)
Grid-MST 74.13 76.92 75.52 (-1.40) 74.83 (-2.09)
Grid-DEL 62.94 74.83 79.02 (+4.19) 79.02 (+4.19)
Projection 81.82 79.02 79.72 (+0.70) 80.42 (+1.40)

Split 80.42 77.62 80.42 (+2.80) 77.62 (+0.00)
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Datasets
GREC

I Graphs representing symbols from architectural and electronic
drawings.

I 22 different classes and five different distortion levels:

I Preprocessing applied for cleaning the images and converting
them to graphs.

I Three independent subsets: training and validation (286
symbols), test (528 symbols).

I Frequency: train and validation set (13), test set (24).

Figure credit: Riesen and Bunke SSPR 2008
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Results
GREC

Method Unlabelled Labelled
Dissimilarity Embedding (Bunke and Riesen PR 2010) - 95.10

Node Attribute Statistics (Gibert et al. PR 2012) - 99.20
Fuzzy Graph Embedding (Luqman et al. PR 2013) - 97.30

SGE (Dutta and Sahbi ArXiv 2017) 92.80 99.62

Level 2 Level 3
PSGE 93.18 (+0.38) 99.62 (+0.00) 99.81 (+0.19)
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Conclusions and Future Work

I Proposal of pyramidal stochastic graphlet embedding.

I Pyramidal representation of graph tolerates noise and
distortion.

I SGE samples low to high order graphlets providing robust
structural statistics.

I Consideration of hierarchical edges as a future line of work.
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Thanks for your attention!
Questions?

Anjan Dutta, PhD
Marie-Curie Postdoctoral Fellow
Computer Vision Center
Autonomous University of Barcelona
Email: adutta@cvc.uab.es
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