Learning Graph Distances with Message Passing Neural Networks

Pau Riba, Andreas Fischer*, Josep Lladós, Alicia Fornés
Computer Vision Center, *Université de Fribourg
ICPR, Beijing, August 23rd, 2018.

Outline

Introduction
Related Concepts
Architecture
Experimental Validation
Datasets
Classification
Retrieval
Conclusion and Future Work

Introduction

Motivation

Graph representations

1. Increasing relevance in visual object recognition and retrieval, beyond classical pure appearance-based approaches.

Motivation

Graph representations

1. Increasing relevance in visual object recognition and retrieval, beyond classical pure appearance-based approaches.

Motivation

Graph representations

1. Increasing relevance in visual object recognition and retrieval, beyond classical pure appearance-based approaches.
2. Visual object detection using graphs involves an inexact subgraph matching formulation.

Motivation

Graph representations

1. Increasing relevance in visual object recognition and retrieval, beyond classical pure appearance-based approaches.
2. Visual object detection using graphs involves an inexact subgraph matching formulation.

Motivation

Graph representations

1. Increasing relevance in visual object recognition and retrieval, beyond classical pure appearance-based approaches.
2. Visual object detection using graphs involves an inexact subgraph matching formulation.
3. It is unavoidable in large scale retrieval (i.e. subgraph matching).

Motivation

Document Analysis

- A graph is a powerful representation, both for text and graphics

coser con ca cartach

Motivation

Geometric Deep Learning

Geometric Deep Learning

Extension of Deep Learning techniques to graph/manifold structured data.

Motivation

Geometric Deep Learning

Geometric Deep Learning
Extension of Deep Learning techniques to graph/manifold structured data.

Image:

- Regular grid
- Operations well defined
- Same size \rightarrow batch processing
- 8-neighbourhood

Graph:

- 4-Tuple $G=\left(V, E, L_{V}, L_{E}\right)$
- Operations not efficient
- Different size \rightarrow batch processing
- Different neighbourhood

Introduction

Hypothesis
Local structural node information can be learned by Geometric Deep Learning and exploited by Graph Distance algorithms.

Thus, we avoid a graph embedding that may be difficult to learn.

Related Concepts

Graph Edit Distance

Definition

Given a set of Graph Edit Operations, the Graph Edit Distance (GED) between two graphs g_{1} and g_{2} is defined as

$$
\operatorname{GED}\left(g_{1}, g_{2}\right)=\min _{\left(e_{1}, \ldots, e_{k}\right) \in \mathcal{P}\left(g_{1}, g_{2}\right)} \sum_{i=1}^{k} c\left(e_{i}\right)
$$

where $\mathcal{P}\left(g_{1}, g_{2}\right)$ denotes the set of edit paths transforming g_{1} into $g 2$ and $c(e)$ is the cost of each edit operation.

Graph Edit Distance

Approximated Techniques

Computation

Exact GED is not feasible in real applications due to its complexity. Several approximations have been proposed.

[^0]
Graph Edit Distance
 Approximated Techniques

Computation

Exact GED is not feasible in real applications due to its complexity. Several approximations have been proposed.

Some approximated algorithms have been proposed.

- Hausdorff Edit Distance (HED)* $\mathcal{O}\left(n_{1} \cdot n_{2}\right)$
- Bipartite Graph Matching (BP) ${ }^{\dagger} \mathcal{O}\left(\left(n_{1}+n_{2}\right)^{3}\right)$

[^1]
Graph Edit Distance
 Approximated Techniques

Computation

Exact GED is not feasible in real applications due to its complexity. Several approximations have been proposed.

Some approximated algorithms have been proposed.

- Hausdorff Edit Distance (HED)* $\mathcal{O}\left(n_{1} \cdot n_{2}\right)$
- Bipartite Graph Matching (BP) ${ }^{\dagger} \mathcal{O}\left(\left(n_{1}+n_{2}\right)^{3}\right)$

The usual Graph Edit Operations in the GED computation are:

- Insertion and Deletion (nodes and edges)
- Substitution (nodes and edges)

[^2]
Geometric Deep Learning

Neural Message Passing*

Message Passing Neural Network (MPNN) is composed of 3 functions:

- Message
- Update
- Readout

[^3]
Geometric Deep Learning

Neural Message Passing*

Message

$$
m_{v}^{t+1}=\sum_{w \in \mathcal{N}(v)} M_{t}\left(h_{v}^{t}, h_{w}^{t}, e_{v w}\right)
$$

[^4]
Geometric Deep Learning

Neural Message Passing*

Message

$$
m_{v}^{t+1}=\sum_{w \in \mathcal{N}(v)} M_{t}\left(h_{v}^{t}, h_{w}^{t}, e_{v w}\right)
$$

Example:

$$
M_{t}\left(h_{v}^{t}, h_{w}^{t}, e_{v w}\right)=A\left(e_{v w}\right) h_{w}^{t}
$$

where $A(\cdot)$ is a NN mapping to a $d \times d$ matrix.

[^5]
Geometric Deep Learning

Neural Message Passing*

Update

$$
h_{v}^{t+1}=U_{t}\left(h_{v}^{t}, m_{v}^{t+1}\right)
$$

[^6]
Geometric Deep Learning

Neural Message Passing*

Update

$$
h_{v}^{t+1}=U_{t}\left(h_{v}^{t}, m_{v}^{t+1}\right)
$$

Example:

$$
U_{t}\left(h_{v}^{t}, m_{v}^{t+1}\right)=G R U\left(h_{v}^{t}, m_{v}^{t+1}\right)
$$

where $\operatorname{GRU}(\cdot, \cdot)$ is a Gated Recurrent Unit.

[^7]
Geometric Deep Learning

Neural Message Passing*

Readout

$$
\hat{y}=R\left(\left\{h_{v}^{T} \mid v \in G\right\}\right)
$$

[^8]
Geometric Deep Learning

Neural Message Passing*

Readout

$$
\hat{y}=R\left(\left\{h_{v}^{T} \mid v \in G\right\}\right)
$$

Example:

$$
R\left(\left\{h_{v}^{T} \mid v \in G\right\}\right)=\sum_{v \in V} \sigma\left(i\left(h_{v}^{(T)}, h_{v}^{0}\right)\right) \odot\left(j\left(h_{v}^{(T)}\right)\right)
$$

where i and j are NN and \odot denotes element-wise multiplication.

* Gilmer et al., "Neural message passing for quantum chemistry".

Architecture

Siamese Architecture

Siamese Architecture

(2)

Siamese Architecture

Graph Similarity

- Hausdorff Distance-based Similarity

$$
\mathrm{H}(A, B)=\max \left(\max _{a \in A} \inf _{b \in B} d(a, b), \max _{b \in B} \inf _{a \in A} d(a, b)\right)
$$

- More robust distance

$$
\hat{\mathrm{H}}(A, B)=\sum_{a \in A} \inf _{b \in B} d(a, b)+\sum_{b \in B} \inf _{a \in A} d(a, b)
$$

- Proposed distance

$$
d\left(g_{1}, g_{2}\right)=\frac{\hat{\mathrm{H}}\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|+\left|V_{2}\right|}
$$

Contrastive Loss

Given $D_{W}=d\left(G_{W}\left(g_{1}\right), G_{W}\left(g_{2}\right)\right)$ where g_{1} and g_{2} are graphs and W a set of specific weights W, the Loss Function is

$$
I\left(D_{W}\right)=\frac{1}{2} \begin{cases}D_{W}^{2}, & \text { if } Y=1 \text { (positive pair) } \\ \left\{\max \left(0, m-D_{W}\right)\right\}^{2}, & \text { if } Y=0 \text { (negative pair) }\end{cases}
$$

where $m=1$ is the adaptive margin.

Experimental Validation

Datasets

Letters

- Classification of Synthetic Graphs
- 15 classes
- 750 graphs per class
- 3 different distortion levels

George Washington

- Retrieval of Handwritten Words
- Several graph constructions
- 105 keywords
- 4894 instances
- HistoGraph subset for classification
can

Experimental Setup

Classification

- k-Nearest Neighbor Classifier
- Accuracy + Standard Deviation (5 runs)
- Tested with well-known Aproximated Graph Edit Distance algorithms

Letters

Classification

Table: Accuracy \pm Std for 5 runs.

	LOW	MED	HIGH
BP *	99.73	94.27	89.87
HED †	97.87	$\mathbf{8 6 . 9 3}$	79.2
Embedding ‡	99.80	94.90	92.90
MPNN	95.04	83.20	72.27
	± 0.7224	± 1.2189	± 2.0060
Siamese MPNN	$\mathbf{9 8 . 0 8}$	$\mathbf{8 9 . 0 1 3 6}$	$\mathbf{7 4 . 7 7}$
	$\pm \mathbf{0 . 1 0 6 8}$	$\pm \mathbf{0 . 1 8 0 8}$	$\pm \mathbf{6 . 4 5 0 5}$
Test BP	98.19	88.37	79.65
	± 0.1361	± 0.41	± 6.4345
Test HED	98.00	89.79	77.07
	± 0.1461	± 0.3110	± 5.6106

[^9]
HistoGraph

Classification

Table: Classification accuracy for the HistoGraph dataset.

			Siamese MPNN	
Subset	BP *	PSGE †	3-NN	5-NN
Keypoint	77.62	80.42	85.31 $\pm \mathbf{1 . 6 5 5 2}$	82.80 ± 0.5600
Projection	81.82	80.42	$\mathbf{7 3 . 1 5}$ $\pm \mathbf{2 . 6 0 1 4}$	69.65 $\pm \mathbf{1 . 5 0 6 4}$

[^10]
Experimental Setup

- Mean Average Precision + Standard Deviation (5 runs)

$$
\mathrm{mAP}=\frac{\sum_{q=1}^{Q} \mathrm{AP}(q)}{Q},
$$

George Washington

Retrieval

Table: mAP from different approaches on GW dataset.

Method	mAP
PHOC*	64.00
BOF HMM ${ }^{\dagger}$	80.00
DTW'01	42.26
DTW DTW'08	63.39
DTW DTW'09	64.80
DTW'16	68.64
Mean Ensemble BP ${ }^{\ddagger}$	69.16
Siamese MPNN	75.85 ± 3.64

[^11]
Conclusion and Future Work

Final thoughts

Conclusions

- Enriched graph representation, incorporating the local context
- Fast similarity measure based on the Hausdorff Distance
- It emphasises the structure
- Improvements in real applications

Future Work

- To explore uses of graph structures to model relations among several images (each image encoded as a node)

謝謝

Thank you for your attention!

Pau Riba
Computer Vision Center priba@cvc.uab.cat www.cvc.uab.cat/people/priba

[^0]: * Fischer et al., "Approximation of graph edit distance based on Hausdorff matching".
 \dagger Riesen et al., "Approximate graph edit distance computation by means of bipartite graph matching".

[^1]: * Fischer et al., "Approximation of graph edit distance based on Hausdorff matching".
 \dagger Riesen et al., "Approximate graph edit distance computation by means of bipartite graph matching".

[^2]: * Fischer et al., "Approximation of graph edit distance based on Hausdorff matching".
 \dagger Riesen et al., "Approximate graph edit distance computation by means of bipartite graph matching".

[^3]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^4]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^5]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^6]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^7]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^8]: * Gilmer et al., "Neural message passing for quantum chemistry".

[^9]: * Riesen et al., "Approximate graph edit distance computation by means of bipartite graph matching".
 \dagger Fischer et al., "Approximation of graph edit distance based on Hausdorff matching".
 \ddagger Gibert et al., "Graph embedding in vector spaces by node attribute statistics".

[^10]: * Stauffer et al., "A Novel Graph Database for Handwritten Word Images".
 ${ }^{\dagger}$ Dutta et al., "Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification"

[^11]: * Ghosh et al., "Query by string word spotting based on character bi-gram indexing".
 \dagger Rothacker et al., "Segmentation-free query-by-string word spotting with bag-of-features HMMs".
 \ddagger Stauffer et al., "Ensembles for Graph-based Keyword Spotting in Historical Handwritten Documents".

