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ICPR, Beijing, August 23rd, 2018.



Introduction Related Architecture Experimental Validation Conclusion

Outline

Introduction

Related Concepts

Architecture

Experimental Validation
Datasets
Classification
Retrieval

Conclusion and Future Work

2 Learning Graph Distances

Pau Riba et al.



Introduction

3 Learning Graph Distances

Pau Riba et al.
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Motivation
Graph representations

1. Increasing relevance in visual object recognition and
retrieval, beyond classical pure appearance-based approaches.

2. Visual object detection using graphs involves an inexact
subgraph matching formulation.

3. It is unavoidable in large scale retrieval (i.e. subgraph
matching).
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Motivation
Document Analysis

I A graph is a powerful representation, both for text and
graphics
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Motivation
Geometric Deep Learning

Geometric Deep Learning

Extension of Deep Learning techniques to graph/manifold
structured data.

Image:

I Regular grid

I Operations well defined

I Same size → batch
processing

I 8-neighbourhood

Graph:

I 4-Tuple G = (V ,E , LV , LE )

I Operations not efficient

I Different size → batch
processing

I Different neighbourhood

10 Learning Graph Distances

Pau Riba et al.



Introduction Related Architecture Experimental Validation Conclusion

Motivation
Geometric Deep Learning

Geometric Deep Learning

Extension of Deep Learning techniques to graph/manifold
structured data.

Image:

I Regular grid

I Operations well defined

I Same size → batch
processing

I 8-neighbourhood

Graph:

I 4-Tuple G = (V ,E , LV , LE )

I Operations not efficient

I Different size → batch
processing

I Different neighbourhood

11 Learning Graph Distances

Pau Riba et al.



Introduction Related Architecture Experimental Validation Conclusion

Introduction

Hypothesis

Local structural node information can be learned by Geometric
Deep Learning and exploited by Graph Distance algorithms.

Thus, we avoid a graph embedding that may be difficult to learn.
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Graph Edit Distance

Definition

Given a set of Graph Edit Operations, the Graph Edit Distance
(GED) between two graphs g1 and g2 is defined as

GED(g1, g2) = min
(e1,...,ek )∈P(g1,g2)

k∑
i=1

c(ei )

where P(g1, g2) denotes the set of edit paths transforming g1 into
g2 and c(e) is the cost of each edit operation.
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Graph Edit Distance
Approximated Techniques

Computation

Exact GED is not feasible in real applications due to its complexity.
Several approximations have been proposed.

Some approximated algorithms have been proposed.

I Hausdorff Edit Distance (HED)∗ O(n1 · n2)

I Bipartite Graph Matching (BP)† O((n1 + n2)3)

The usual Graph Edit Operations in the GED computation are:

I Insertion and Deletion (nodes and edges)

I Substitution (nodes and edges)

∗ Fischer et al., “Approximation of graph edit distance based on Hausdorff matching”.

† Riesen et al., “Approximate graph edit distance computation by means of bipartite graph matching”.
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Geometric Deep Learning
Neural Message Passing∗

Message Passing Neural Network
(MPNN) is composed of 3
functions:

I Message

I Update

I Readout

∗ Gilmer et al., “Neural message passing for quantum chemistry”.
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Geometric Deep Learning
Neural Message Passing∗

Message

mt+1
v =

∑
w∈N (v)

Mt(h
t
v , h

t
w , evw )

Example:
Mt(h

t
v , h

t
w , evw ) = A(evw )htw

where A(·) is a NN mapping to a d × d matrix.

∗ Gilmer et al., “Neural message passing for quantum chemistry”.
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Geometric Deep Learning
Neural Message Passing∗

Update

ht+1
v = Ut(h

t
v ,m

t+1
v )

Example:
Ut(h

t
v ,m

t+1
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t+1
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Geometric Deep Learning
Neural Message Passing∗

Readout

ŷ = R({hTv |v ∈ G})

Example:

R({hTv |v ∈ G}) =
∑
v∈V

σ
(
i(h

(T )
v , h0

v )
)
�
(
j(h

(T )
v )

)
where i and j are NN and � denotes element-wise multiplication.
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Siamese Architecture
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Siamese Architecture
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Siamese Architecture
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Graph Similarity

I Hausdorff Distance-based Similarity

H(A,B) = max
(

max
a∈A

inf
b∈B

d(a, b),max
b∈B

inf
a∈A

d(a, b)
)

I More robust distance

Ĥ(A,B) =
∑
a∈A

inf
b∈B

d(a, b) +
∑
b∈B

inf
a∈A

d(a, b)

I Proposed distance

d(g1, g2) =
Ĥ(V1,V2)

|V1|+ |V2|
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Contrastive Loss

Given DW = d(GW (g1),GW (g2)) where g1 and g2 are graphs and
W a set of specific weights W , the Loss Function is

l(DW ) =
1

2

{
D2
W , if Y = 1 (positive pair)

{max(0,m − DW )}2, if Y = 0 (negative pair)

where m = 1 is the adaptive margin.
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Datasets

Letters

I Classification of Synthetic
Graphs

I 15 classes

I 750 graphs per class

I 3 different distortion levels

George Washington

I Retrieval of Handwritten
Words

I Several graph constructions

I 105 keywords

I 4894 instances

I HistoGraph subset for
classification
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Experimental Setup
Classification

I k-Nearest Neighbor Classifier

I Accuracy + Standard Deviation
(5 runs)

I Tested with well-known Aproximated
Graph Edit Distance algorithms
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Letters
Classification

Table: Accuracy ± Std for 5 runs.

LOW MED HIGH

BP∗ 99.73 94.27 89.87
HED† 97.87 86.93 79.2
Embedding‡ 99.80 94.90 92.90

MPNN
95.04
±0.7224

83.20
±1.2189

72.27
±2.0060

Siamese MPNN
98.08
± 0.1068

89.0136
± 0.1808

74.77
± 6.4505

Test BP
98.19
±0.1361

88.37
±0.41

79.65
±6.4345

Test HED
98.00
±0.1461

89.79
±0.3110

77.07
±5.6106

∗ Riesen et al., “Approximate graph edit distance computation by means of bipartite graph matching”.

† Fischer et al., “Approximation of graph edit distance based on Hausdorff matching”.

‡ Gibert et al., “Graph embedding in vector spaces by node attribute statistics”.
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HistoGraph
Classification

Table: Classification accuracy for the HistoGraph dataset.

Siamese MPNN

Subset BP∗ PSGE† 3-NN 5-NN

Keypoint 77.62 80.42
85.31
± 1.6552

82.80
± 0.5600

Projection 81.82 80.42
73.15
± 2.6014

69.65
± 1.5064

∗ Stauffer et al., “A Novel Graph Database for Handwritten Word Images”.

† Dutta et al., “Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification”.
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Experimental Setup
Retrieval

I Mean Average Precision + Standard Deviation (5 runs)

mAP =

∑Q
q=1 AP(q)

Q
,

36 Learning Graph Distances

Pau Riba et al.



Introduction Related Architecture Experimental Validation Conclusion

George Washington
Retrieval

Table: mAP from different approaches on GW dataset.

Method mAP

PHOC∗ 64.00

BOF HMM† 80.00

DTW

DTW’01 42.26
DTW’08 63.39
DTW’09 64.80
DTW’16 68.64

Mean Ensemble BP‡ 69.16

Siamese MPNN 75.85±3.64

∗ Ghosh et al., “Query by string word spotting based on character bi-gram indexing”.

† Rothacker et al., “Segmentation-free query-by-string word spotting with bag-of-features HMMs”.

‡ Stauffer et al., “Ensembles for Graph-based Keyword Spotting in Historical Handwritten Documents”.
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Final thoughts

Conclusions
I Enriched graph representation, incorporating the local context
I Fast similarity measure based on the Hausdorff Distance
I It emphasises the structure
I Improvements in real applications

Future Work
I To explore uses of graph structures to model relations among

several images (each image encoded as a node)
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